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UNIVERSAL ESTIMATES FOR ALMOST FLAT ARCS

MATTHEW BADGER AND SEAN MCCURDY

Abstract. We prove that in any Banach space the set of windows in which a rectifiable

curve resembles two or more straight line segments is quantitatively small with constants

that are independent of the curve, the dimension of the space, and the choice of norm.

Together with Part I, this completes the proof of the necessary half of the Analyst’s

Traveling Salesman theorem with sharp exponent in uniformly convex spaces.
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1. Introduction

1.1. Background. Given “snapshots” of a set E in a metric space X at all locations

and scales, the Analyst’s Traveling Salesman Problem is to determine whether or not

E is contained in a rectifiable curve, and if so, to estimate the length of the shortest

such curve. Full solutions to the Analyst’s TSP (characterizations of subsets of rectifiable

curves) have been found in Rn [Jon90, Oki92], in arbitrary Carnot groups [Li22], in Hilbert

space [Sch07c], and in certain fractal-like metric spaces [DS17]. For the related Measure-

theorist’s Traveling Salesman Problem and its solution in Rn and also in Carnot groups,

see [BS17, Bad19, BLZ22]. Partial results on the Analyst’s TSP in other metric spaces

have been obtained by Hahlomaa [Hah05, Hah08] and David and Schul [DS21] and for

higher-dimensional objects [AS18, BNV19, Hyd22, Vil20]. Refined estimates on the length

of the shortest Jordan curve containing a set in Rn or Hilbert space have been given in

[Bis22, Kra22]. In Part I [BM22] and in the present paper, we address the Analyst’s TSP

on a general Banach space.

Let X be a (real) Banach space, let E ⊂ X be a nonempty set, and let Q ⊂ X be a set

of finite, positive diameter. If E ∩Q ̸= ∅, we define

(1.1) βE(Q) = inf
L

sup
x∈E∩Q

dist(x, L)

diamQ
∈ [0, 1],

where the infimum ranges over all lines L ⊂ X. If E ∩Q = ∅, then we assign βE(Q) = 0.

These are a geometric variant of least squares errors introduced in [Jon90] and are now

called Jones’ beta numbers. If βE(Q) = 0, then the portion of the set E inside of the

“window” Q is contained in some line L; if βE(Q) ≳ 1, then for each line L passing

through Q, at least some part of E ∩ Q is far away from L. An easy, but important

consequence of the definition is

(1.2) βE(R) ≤ diamQ

diamR
βF (Q) for all E ⊂ F and R ⊂ Q.

Thus, an estimate of flatness at one scale yields (a worse) estimate of flatness at a smaller

scale. Because any rectifiable curve Γ ⊂ X admits tangents lines almost everywhere with

respect to the 1-dimensional Hausdorff measure H1, it is perhaps reasonable to expect

that limr→0 βΓ(B(x, r)) = 0 at H1-a.e. x ∈ Γ. Following [Jon90], which marks the start

of quantitative geometric measure theory as its own subject, we are interested in making

this qualitative statement more precise.

In Part I [BM22], we established universal sufficient conditions for a set in an arbitrary

Banach space to be contained inside a rectifiable curve, as well as improved estimates on

the length of the shortest curve containing a set in uniformly smooth spaces. The origin

of this result is Jones’s criterion [Jon90] for the existence of a rectifiable curve passing

through a given set in Rn, which is usually stated using systems of dyadic cubes. However,

because we work in infinite-dimensional settings, we prefer to use Schul’s formulation

[Sch07c] in terms of multiresolution families. Recall that an ϵ-net for E ⊂ X is a maximal

set X ⊂ E such that |x− y| ≥ ϵ for all distinct x, y ∈ X. A multiresolution family G for
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E with inflation factor AG > 1 is a family {B(x,AG 2
−k) : x ∈ Xk, k ∈ Z} of closed balls

with centers in some nested family · · · ⊂ X−1 ⊂ X0 ⊂ X1 ⊂ · · · of 2−k-nets Xk for E.

Analogously, if each set Xk is a 2−k-separated set, but possibly one or more of the sets

Xk are not 2−k-nets, then we call G a partial multiresolution family for E.

Theorem 1.1 ([Jon90, Sch07c, BM22]). Let X be Banach space and let 1 ≤ p ≤ 2.

Suppose that

(i) X is an arbitrary Banach space and p = 1; or,

(ii) X is a uniformly smooth Banach space of power type 1 < p ≤ 2; or,

(iii) X is a Hilbert space and p = 2; or,

(iv) X is a finite-dimensional Banach space and p = 2.

If E ⊂ X, G is a multiresolution family for E with inflation factor AG ≥ 240, and

(1.3) SE,p(G ) := diamE +
∑
Q∈G

βE(Q)p diamQ < ∞,

then E is contained in a rectifiable curve Γ ⊂ X with H1(Γ) ≲AG ,X SE,p(G ). (When p = 1,

restrict the sum in the definition of SE,1(G ) to balls Q ∈ G with diamQ ≲ diamE.)

Remark 1.2. In cases (i) and (iii), the implicit constant in Theorem 1.1 in the comparison

H1(Γ) ≲AG ,X SE,p(G ) depends only on AG . In case (ii), the implicit constant depends only

on AG and the modulus of smoothness of X. In case (iv), the implicit constant depends on

AG , the dimension of X, and the bi-Lipschitz constant of a chosen embedding X ↪→ ℓdimX
2 .

In the present paper, we complete the proof of the following theorem, which is dual to

Theorem 1.1. Where the modulus of smoothness is the relevant characteristic of a space

for sufficient conditions, the modulus of convexity of the space is the relevant characteristic

for necessary conditions. The special cases X = R2 and X = Rn, n ≥ 3 of Theorem 1.3

are originally due to Jones [Jon90] and Okikiolu [Oki92], respectively. When X is an

infinite-dimensional Hilbert space, the theorem was identified in [Sch07c], but the proof

in that paper has serious gaps (see [BM22, Remark 3.8] and Appendix C) and a complete

proof seems to not have been written until now. (An alternative fix of some portions of

the proof in Schul’s paper is proposed by Krandel [Kra22].)

Theorem 1.3. Let X be a Banach space and let 2 ≤ p < ∞. Suppose that

(i) X is a uniformly convex Banach space of power type 2 ≤ p < ∞; or,

(ii) X is a Hilbert space and p = 2; or,

(iii) X is a finite-dimensional Banach space and p = 2.

If E ⊂ X is contained in a rectifiable curve Γ and G is any (partial) multiresolution family

for E, then SE,p(G ) ≲AG ,X H1(Γ).

Remark 1.4. Again, in case (ii), the implicit constant in the comparison SE,p(G ) ≲AG ,X

depends only on the inflation factor AG . In case (i), the implicit constant depends only

on AG and the modulus of convexity of X. In case (iii), the implicit constant depends on

AG , the dimension of X, and the bi-Lipschitz constant of an embedding X ↪→ ℓ dimX
2 .
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Combining Theorems 1.1 and 1.3, we recover Schul’s solution of the Analyst’s TSP in

Hilbert space [Sch07c]. For derivation of Jones’s and Okikiolu’s dyadic cube formulation

of Corollary 1.5 in any finite-dimensional Banach space, see [BM22, §4].

Corollary 1.5. Let X be any Hilbert space. A bounded set E ⊂ X is a subset of a

rectifiable curve in X if and only if

(1.4)
∑
Q∈G

βE(Q)2 diamQ < ∞

for some (for every) multiresolution family G for E with inflation factor AG ≥ 240.

Furthermore, if (1.4) holds, then E is contained in some rectifiable curve Γ with extrinsic

length H1(Γ) ≲AG
SE,2(G ).

The solution of the Analyst’s TSP in Hilbert space depends heavily on the Pythagorean

theorem as well as invariance of distances under orthogonal transformation. These special

features of Hilbert space are not available in a general Banach space. While Theorem 1.1

gives a sufficient test for a set to lie in a rectifiable curve and Theorem 1.3 provides us

necessary conditions, a complete characterization of subsets of rectifiable curves in an

infinite-dimensional non-Hilbert Banach space is still unknown. The following example

and remarks show that a new idea is needed. See [Sch07b] for further discussion of the

underlying challenges and [DS21] for recent partial progress.

Example 1.6. If 1 < p < ∞, then the Banach space X = ℓp of real-valued sequences

x = (xi)
∞
1 with ∥x∥p = (

∑∞
1 |xi|p)1/p is uniformly smooth of power type min{p, 2} and

uniformly convex of power type max{2, p}. Let E ⊂ ℓp be bounded. By Theorem 1.1,

(1.5)
∑
Q∈G

βE(Q)min{p,2} diamQ < ∞ =⇒ E lies inside some rectifiable curve Γ.

By Theorem 1.3,

(1.6)
∑
Q∈G

βE(Q)max{2,p} diamQ < ∞ ⇐= E lies inside some rectifiable curve Γ.

Because min{p, 2} < max{2, p} unless p = 2, this means that there is a strict gap between

Theorem 1.1 and 1.3 for infinite-dimensional non-Hilbert Banach spaces.

Remark 1.7. In [BM22, §5], we construct examples that show that the exponents in

(1.5) and (1.6) are sharp. For instance, for any 2 ≤ p < ∞, we build a curve Γ in ℓp with

H1
ℓp
(Γ) < ∞ and SE,p−ϵ(G ) = ∞ for all ϵ > 0.

Remark 1.8. Equivalence of norms on finite-dimensional spaces ensures that a curve is

rectifiable independent of the choice of norm (although the length depends on the norm).

By contrast, the infinite-dimensional ℓp spaces are distinguished by their rectifiable curves

in the following sense. For each 1 < p < ∞, there exists a curve Γ in ℓp such that

H1
ℓp
(Γ) = ∞ and H1

ℓp+ϵ
(Γ) < ∞ for all ϵ > 0. See [BM22, Proposition 1.1].
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The proof of Theorem 1.3 for uniformly convex Banach spaces started in [BM22, §3]

follows the outline of the argument in [Sch07c], but with the correction noted in [BM22,

Remark 3.24], which required weakening Schul’s original definition of “almost flat arcs”.

More specifically, we proved Theorem 1.3 modulo verification of [BM22, Theorem 3.30],

which is the Main Theorem of this paper. Roughly speaking, the main theorem is a

quantitative strengthening of the statement that at H1 almost every point, at sufficiently

small scales, a rectifiable curve does not resemble a union of two or more line segments.

By proving the main theorem, we shall complete the demonstration of Theorem 1.3.

The estimates that we establish below are universal in so far as they are valid in any

Banach space. Because of the general setting, we have very few tools at our disposal.

Our primary tools are the triangle inequality, connectedness of arcs, and the existence of

Lipschitz projections onto 1-dimensional subspaces (see Appendix B).

1.2. Almost flat arcs and statement of the Main Theorem. For the remainder of

the paper fix a Banach space (X, | · |), a rectifiable curve Γ in X, a (partial) multiresolution

family H for Γ with inflation factor AH > 1 and centers in a family (Xk)k∈Z of 2−k-

separated sets for Γ, and a continuous parameterization f : [0, 1] → Γ. For the purpose of

proving the Main Theorem below, we do not need to (and shall not) place any restrictions

on the modulus of continuity or multiplicity of f , but if so desired, one may assume as in

Part I that f is Lipschitz continuous, #f−1{x} ≤ 2 for H1-a.e. x ∈ Γ, and f(0) = f(1)

(see [AO17]).

Definition 1.9 (classification of arcs [BM22]). An arc, τ = f |[a,b], of Γ is the restriction

of f to some interval [a, b] ⊂ [0, 1]. Given an arc τ : [a, b] → Γ, define

Domain(τ) = [a, b], Start(τ) = τ(a) = f(a), End(τ) = τ(b) = f(b),

Image(τ) = τ([a, b]) = f([a, b]) and Diam(τ) = diam Image(τ).

For any ball Q ∈ H and scaling factor λ ≥ 1, let

(1.7) Λ(λQ) :=

{
f |[a,b] :

[a, b] is a connected component of f−1(Γ ∩ 2λQ)

such that λQ ∩ f([a, b]) ̸= ∅

}
.

The elements in Λ(λQ) are arcs in 2λQ that touch λQ. Agree to write βΛ(λQ)(2λQ) as

shorthand for β⋃
{Image(τ):τ∈Λ(λQ)}(2λQ).

An arc τ ∈ Λ(λQ) is called ∗-almost flat if

(1.8) β(τ) := βImage(τ)(Image(τ)) = inf
L

sup
z∈Image(τ)

dist(z, L)

Diam(τ)
≤ 50ϵ2βΛ(λQ)(2λQ),

where L ranges over all lines in X and 0 < ϵ2 ≪ 1 is a constant depending on at most

the inflation factor AH of H and ϵ1 (see Definition 1.11). Denote the set of ∗-almost flat

arcs in Λ(λQ) by S∗(λQ).

An arc τ ∈ Λ(λQ) is called almost flat if β(τ) ≤ ϵ2βΓ(Q). Denote the set of almost flat

arcs in Λ(λQ) by S(λQ). An arc τ ∈ Λ(λQ) \ S(λQ) is called dominant.
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Remark 1.10. We do not require that arcs be 1-to-1. By (1.2), every almost flat arc is

∗-almost flat provided that λ ≤ 25. The peculiar definition of ∗-almost flat arc, i.e. the

constant 50 in (1.8), and the focus on scaling factors λ ∈ {1, 5} in arguments below are

made in order to implement the proof of [BM22, Lemma 3.29]. However, these choices

will play no direct role in the arguments in this paper.

Below, given an arc τ and window Q, we write βτ (Q) as shorthand for βImage(τ)(Q).

Similarly, given a set S of arcs, we write βS(Q) = β⋃
{Image(τ):τ∈S}(Q).

Definition 1.11 (B balls). Let 0 < ϵ1 ≪ 1 be a constant depending on at most the

inflation factor AH of H . Given λ ≥ 1, let Bλ denote the collection of all balls Q ∈ H
such that

(i) βΓ(Q) ̸= 0 and Γ \ 14Q ̸= ∅;
(ii) if τ ∈ Λ(λQ) and Image(τ) intersects the net ball (1/3AH )Q = B(x, (1/3)2−k)

near the center of Q = B(x,AH 2−k), with x ∈ Xk, then τ ∈ S(λQ), and

(iii) βS∗(λQ)(2λQ) > ϵ1βΛ(λQ)(2λQ).

Assign B = B1 ∪ B5.

Remark 1.12. In Part I, we take ϵ1 = 1/126AH to prove and use [BM22, Lemma 3.29].

The importance of the net balls is that they are uniformly separated in each generation.

That is, if k ∈ Z, x1, x2 ∈ Xk are distinct points, and Qi = B(xi, AH 2−k) ∈ H , then

(1.9) gap((1/3AH )Q1, (1/3AH )Q2) ≥ (1/3)2−k > 0,

where for any nonempty sets S, T ⊂ X, gap(S, T ) = infs∈S,t∈T |s − t| denotes the gap

between S and T . (In harmonic analysis, the notation dist(S, T ) may be more familiar.)

If ϵ2 is very small, then at the resolution of 2λQ, almost flat and ∗-almost flat arcs look

like line segments.1 Roughly, the class B consists of all balls in the multiresolution family

H such that 2λQ contains at least two ∗-almost flat arcs (with distinct images) and the

union of the images of arcs in S∗(λQ) is as non-flat as the union of the images of all arcs

in Λ(λQ). Our main theorem says that for any rectifiable curve in any Banach space, the

collection B of locations and scales with this behavior is rare relative to H1(Γ).

Theorem 1.13 (Main Theorem). Assume that ϵ2 is sufficiently small depending only on

AH and ϵ1; ϵ2 = 2−55ϵ1/AH will suffice. For all q > 0,

(1.10)
∑
Q∈B

βΓ(Q)q diamQ ≲q,AH ,ϵ1 H1(Γ),

where the implicit constant blows up as q ↓ 0.

Remark 1.14. A consequence of the Main Theorem is that in order to prove Theorem 1.3

for a particular curve Γ, in a particular Banach space X, and for a particular exponent p,

it (essentially) suffices to prove
∑

Q∈A βΓ(Q)p diamQ ≲p,AH
H1(Γ), where Q ∈ A ⊂ H

are balls whose net ball (1/3AH )Q is intersected by a dominant arc. (Besides A and B,

1At scales much smaller than 2λQ, almost flat and ∗-almost flat arcs can look like any rectifiable curve.
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there is also a class of C balls; see [BM22, §3.3] for details.) In Part I, we do this for

curves in uniformly convex Banach spaces of power type 2 ≤ p < ∞ and prove Theorem

1.3 assuming the Main Theorem ([BM22, Theorem 3.30]).

Remark 1.15. In [Sch07c], Schul gives a version of the Main Theorem in Hilbert space,

but with some differences. In particular, almost flat arcs τ = f |[a,b] in [Sch07c] satisfy the

more stringent requirement

(1.11) β̃(τ) = sup
c∈[a,b]

dist(f(c), [f(a), f(b)])

diam Image(τ)
≤ ϵ2βΓ(Q).

A geometric consequence is that β̃ almost flat arcs that pass near the center of Q are

“diametrical” in the sense that diam Image(τ) ∩Q ≥ (1−O(ϵ2)) diamQ. By contrast an

almost flat arc with our definition that passes near the center of Q may be “radial” in the

sense that diam Image(τ)∩Q ≤ (1/2+O(ϵ2)) diamQ. The existence of radial arcs causes

substantial difficulties in the proof of the main theorem; see Remark 3.5. For additional

comments on the proof of the theorem in [Sch07c], see Appendix C.

Remark 1.16. R. Schul (personal communication) suggested an alternate approach to

handling radial arcs. If one assumes f is Lipschitz, then (1.10) for the subset of all Q ∈ B
that contain one or more radial arcs is subsumed by the Carelson-type estimates in Azzam

and Schul’s quantitative metric differentation theorem [AS14]. Such an approach entails

passing between multiresolution families in the domain and image of f , which is not

needed in the direct argument below. The techniques in this paper may be better suited

to proving a converse to the Hölder Traveling Salesman theorem [BNV19].

We devote the remainder of the paper to the proof of the Main Theorem. The journey

is somewhat long, but we try to make the first few sections as easy to read as possible.

We hope that the reader who reaches the end may say that they have gained at least an

incrementally better insight into the mysteries of Banach space geometry. Sections 2–7

are best read in the order presented. In §2, we describe Schul’s clever idea to prove (1.10)

by constructing geometric martingales out of curve fragments [Sch07c]. We show how to

modify the original argument to account for the possibility of “radial” arcs. An important

quantity introduced is diamHQ, the diameter of a “maximal arc fragment” in the “core”

UQ of a ball. In §3, we outline the proof of the main theorem, including a discussion of

the underlying challenges and a plan to overcome them. Ultimately, we reduce the proof

of the main theorem to two key estimates, Lemma I and Lemma II. Section 4 sketches the

geometry of possible configurations of almost flat arcs that we encounter in later proofs.

Section 5 takes a crucial step towards better estimates by identifying an auxiliary family

of cores nearby a given arc fragment that possesses a sufficient amount of “extra length.”

A vital technical tool is Lemma 5.8, which is proved using a topological argument.

We prove the main estimates in several stages. First, in Lemma 6.1, we show that

(1.12) diamHQ ≤ 2H1(Γ ∩RQ) + 1.37
∑

diamHQ′ ,
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where RQ is a “remainder” set and the sum ranges over all “children” UQ′ of the core UQ.

While this is a substantial improvement of the coarse estimate (3.6), which holds with

2.01 instead of 1.37, to prove the main theorem we need the estimate to hold with the

coefficient of the sum strictly less than 1! In the end, by a case analysis and iterating the

proof of (1.12), using (1.12) instead of (3.6), we obtain the key estimate with a coefficient

less than 0.96. See §6 (proof of Lemma I) and §7 (proof of Lemma II) for details.

1.3. Acknowledgements. This paper would not exist without the solid foundations of

its predecessors, especially the body of work by P. Jones, K. Okikiolu, and R. Schul.

Part I of this project began when M. Badger hosted S. McCurdy at UConn in Fall 2018.

The extended visit was made possible by NSF DMS 1650546.

2. Schul’s martingale argument in a Banach space

We describe Schul’s martingale argument (see [Sch07c, §3.3]) for upper bounding sums

of βΓ(Q)q diamQ over subfamilies of B, where q is any positive exponent! In this context,

martingale refers to a recursively defined sequence of geometric weights associated to a

tree of “cores” of overlapping balls. We formalize this terminology below. Schul’s method

is robust and can be implemented in any Banach space.

2.1. Start of the proof: reduction to existence of weights. Recall that if Q ∈ B,

say Q = B(x,AH 2−k) for some k ∈ Z and x ∈ Xk, then there exists λ = λ(Q) ∈ {1, 5}
such that every arc τ ∈ Λ(λQ) that intersects the net ball B(x, (1/3)2−k) is almost flat,

β(τ) ≤ ϵ2βΓ(Q), and hence is ∗-almost flat, β(τ) ≤ 50ϵ2βΛ(λQ)(2λQ). Moreover, the set

S∗(λQ) of ∗-almost flat arcs in Λ(λQ) satisfies βS∗(λQ)(2λQ) > ϵ1βΛ(λQ)(2λQ).

Suppose that we have broken up B into a finite number of (possibly overlapping)

families B(1), . . . ,B(N), where N is independent of X and λ(Q) ≡ λ ∈ {1, 5} is uniform

across all Q in any fixed family B(n). (The partition that we eventually use is described

in §3.) To prove the Main Theorem, in particular (1.10), it suffices to prove that for each

B′ = B(n) and q > 0, we have

(2.1)
∑
Q∈B′

βS∗(λQ)(2λQ)q diamQ ≲q,AH
H 1(Γ),

because βΓ(Q)q = βΛ(λQ)(Q)q ≲q βΛ(λQ)(2λQ)q ≲q,ϵ1 βS∗(λQ)(2λQ)q for all Q ∈ B.

We now fix a family B′ = B(n) and describe a strategy to prove (2.1) for B′. For the

remainder of the paper, we set

K := 100 + ⌈log2AH ⌉ ≥ 100.(2.2)

The value of K is chosen according to certain geometric requirements below, but for now

the reader may think of K as being some large positive integer that is independent of the

family B′. For the duration of the paper, for all integers M ≥ 1 and 0 ≤ j ≤ KM − 1,

we let G M,j denote the set of all Q ∈ B′ such that

• Q = B(x,AH 2−k) for some k ≡ j (modKM) and x ∈ Xk, and

• 2−M < βS∗(λQ)(2λQ) ≤ 2−(M−1).
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Each Q ∈ B′ belongs to precisely one of the families G M,j for some integers M ≥ 1 and

0 ≤ j < KM − 1. We will prove that when ϵ2 is sufficiently small compared to ϵ1/AH ,

(2.3)
∑

Q∈GM,j

diamQ ≲AH
H1(Γ)

for all M and j. (We only refer to ϵ1 two more times, once in (3.1) and once in the

derivation of (4.2).) This suffices, because for any q > 0,∑
Q∈B′

βS∗(λQ)(2λQ)q diamQ ≤
∞∑

M=1

2−(M−1)q

KM−1∑
j=0

∑
Q∈GM,j

diamQ ≲q,AH
H1(Γ),

where in the last inequality, we used
∑∞

M=1M2−(M−1)q ≲q 1 and K ≲AH
1. That is, (2.3)

for all M and j implies (2.1) holds for the family B′.

We now fix integers M ≥ 1 and 0 ≤ j1 ≤ KM − 1 and write G = G M,j1 . We make

a further reduction. Suppose that for each ball Q ∈ G we possess a Borel measurable

function wQ : X → [0,∞] which satisfies two properties:

(2.4)

∫
Γ

wQ dH1 ≳AH
diamQ for all Q ∈ G ;

(2.5)
∑
Q∈G

wQ(x) ≲ 1 at H1-a.e. x ∈ Γ.

Then ∑
Q∈G

diamQ ≲AH

∑
Q∈G

∫
Γ

wQ dH1 =

∫
Γ

∑
Q∈G

wQ dH1 ≲AH
H1(Γ).

That is, the existence of weights wQ satisfying (2.4) and (2.5) imply (2.3). Our task is to

construct the weights, assuming that ϵ2 is sufficiently small.

2.2. Cores and maximal almost flat arcs. Following [Sch07c], it will be convenient to

introduce a nested family of “cores” UJ,c
Q , lying near the center of balls Q ∈ H . Cores are

formed by joining overlapping dilations of balls in H from future generations, skipping

by J generations at a time.

Definition 2.1 ([Sch07c]). Let Q ∈ H , say that Q = B(x,AH 2−k) for some k ∈ Z and

x ∈ Xk. For any integer J ≥ 4 and 0 < c ≤ 1/5, we define the (J, c)-core UJ,c
Q of Q

inductively by setting UJ,c
Q,0 := B(x, c2−k) = (c/AH )Q,

UJ,c
Q,i := UJ,c

Q,i−1 ∪
⋃

y∈Xk+Jj for some j≥1

B(y,c2−(k+Jj))∩UJ,c
Q,i−1 ̸=∅

B(y, c2−(k+Jj)) for all i ≥ 1, and UJ,c
Q :=

∞⋃
i=0

UJ,c
Q,i.

Cores are a variation on the Christ-David “dyadic cubes” in a doubling metric space.

Although an infinite-dimensional Banach space is not a doubling metric space, we note

that the nets Xk are finite because Γ is compact. For a streamlined construction of metric

cubes that starts with any nested family of locally finite nets, see [KRS12].
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Lemma 2.2 (properties of cores, cf. [Sch07c, Lemma 3.19]). Given J ≥ 4, 0 < c ≤ 1/5,

and 0 ≤ j ≤ J − 1, let U be the family of cores defined by

U = {UJ,c
Q : Q = B(x,AH 2−k) for some x ∈ Xk and k ≡ j (mod J)}.

If Q,R ∈ H with Q = B(x,AH 2−k) and R = B(y, AH 2−m) for some k,m ≡ j (mod J),

x ∈ Xk, and y ∈ Xm, then the cores UJ,c
Q and UJ,c

R belong to the family U and satisfy:

(i) Shape: B(x, c2−k) ⊂ UJ,c
Q ⊂ B(x, (1 + 3/2J)c2−k) ⊂ B(x, (1/4)2−k).

(ii) Separation within levels: If k = m and x ̸= y, then gap(UJ,c
Q , UJ,c

R ) ≥ (1/2)2−k.

(iii) Tree structure: If m ≥ k and UJ,c
Q ∩ UJ,c

R ̸= ∅, then UJ,c
R ⊂ UJ,c

Q .

Proof. For (i), given Q = B(x,AH 2−k), the first containment is immediate, because

B(x, c2−k) = UJ,c
Q,0 ⊂ UJ,c

Q . For the second containment, UJ,c
Q ⊂ B(x, (1+3/2J)c2−k), apply

Lemma A.1 with parameters ξ = 2J and r0 = c2−k and balls B(y, c2−(k+Jj)) appearing in

the definition of UJ,c
Q assigned to level j. The reader should check that the hypotheses of

Lemma A.1 are satisfied, but here are the essential points: With J ≥ 4, the parameter ξ ≥
16 > 6. The chain hypothesis is satisfied by the construction of the cores. The separation

hypothesis is satisfied, because the centers of balls in level j are 2−(k+Jj) separated and

(1− 2c) ≥ 3c. The final containment in (i) holds, since (1 + 3/2J)c ≤ 19/80 < 1/4 when

J ≥ 4 and c ≤ 1/5. Property (ii) holds by property (i) and fact that |x − y| ≥ 2−k

when x, y ∈ Xk are distinct. When m = k, property (iii) is immediate from property (ii).

Finally, when m > k, property (iii) follows from the construction. Indeed, UJ,c
Q ∩UJ,c

R ̸= ∅
only if UJ,c

Q,i ∩ UJ,c
R,j ̸= ∅ for some i, j, so UJ,c

R,j+l ⊂ UJ,c
Q,i+j+1+l for all l ≥ 0, since m > k. □

Definition 2.3. For all Q ∈ H (in particular, for Q ∈ G ), let UQ denote the (J, c)-core

UJ,c
Q with parameters J = KM and c = 2−12, with K as in (2.2), and let Q∗ denote UJ,c

Q,0.

Remark 2.4. A core UQ looks like the ball Q∗, except that it may have “tiny bubbles”

pushing outward near the boundary ∂Q∗ of the ball. Cores are not necessarily convex.

Remark 2.5. If Q = B(x,AH 2−k) ∈ H for some k ∈ Z and x ∈ Xk, then

(2.6) Q∗ = B(x, 2−12 2−k) ⊂ UQ ⊂ 1.00001Q∗

by Lemma 2.2, since 1 + 3/2KM ≤ 1+ 3/2100 < 1.00001. (Fifth decimal place precision is

chosen to facilitate select estimates in §§3–7.) If Q ∈ G and Q′ = B(y, AH 2−m) ∈ G for

some m ≡ k (modKM) with m > k, then

(2.7) diam 2λQ′ ≤ 20AH 2−m ≤ 32AH 2−KM2−k ≤ 2−84 diamQ∗,

since 2−KM ≤ 2−100A−1
H , 32AH 2−KM ≤ 2−95, and diamQ∗ = 2−112−k. In particular,

(2.8) 2λQ′ ∩ 0.99999Q∗ ̸= ∅ =⇒ 2λQ′ ⊂ Q∗ ⊂ UQ.

Remark 2.6. The core UQ of a ball Q ∈ H is much smaller than the net ball (1/3AH )Q:

210UQ ⊂ (1/3AH )Q, where dilations are relative to the center of Q. When Q′ ∈ H \{Q}
and diamQ′ = diamQ, Lemma 2.2(ii) implies gap(UQ, UQ′) ≥ 210 diamQ∗ ≥ 29 diamUQ.
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Remark 2.7 (tree structure). By Lemma 2.2, we may view G as a forest of trees ordered

by inclusion of the cores {UQ : Q ∈ G }. That is, we declare P ∈ G to be the parent of

Q ∈ G if and only if P is the unique element such that UQ ⊊ UP and UQ ⊂ UR ⊂ UP for

some R ∈ G implies R ∈ {P,Q}. Note that

(2.9) sup
Q∈B

diamQ ≤ (1/14) diamΓ < ∞,

since Γ \ 14Q ̸= ∅ for all Q ∈ B and Γ is a rectifiable curve. Hence every element of G
sits below a maximal element in G , i.e. a ball without a parent. Extending the metaphor,

we say that Q is a child of P if P is the parent of Q. We let Child(P ) denote the set of

all Q ∈ G such that Q is a child of P . For each ball P ∈ G , the set Child(P ) may be

empty, nonempty and finite, or countably infinite. We also view {UQ : Q ∈ G } as a tree

ordered by inclusion and call UQ′ a child of UQ if and only if Q′ ∈ Child(Q). A child is a

1st generation descendent, a child of a child is a 2nd generation descendent, etc.

We now diverge slightly from [Sch07c] and introduce (possibly disconnected) fragments

of ∗-almost flat arcs on the image side of f . We also define a class of closed, connected

subsets of fragments called subarcs.

Definition 2.8 (fragments of ∗-almost flat arcs). For each Q ∈ G and nonempty set

W ⊂ 2λQ, with λ ∈ {1, 5} determined by G , let Γ∗
W = {Image(τ)∩W : τ ∈ S∗(λQ)}\{∅}.

Definition 2.9 (subarcs). Let T ′ ∈ Γ∗
W , say T ′ = Image(τ)∩W for some arc τ ∈ S∗(λQ).

We say that T ⊂ T ′ is a subarc of T ′ if T = τ(I) = f(I) for some non-degenerate interval

I = [a, b] ⊂ Domain(τ); we say that the presentation T = f(I) is efficient if, in addition,

diamT = |f(a)− f(b)|.

Remark 2.10. A subarc T of an arc fragment T ′ ∈ Γ∗
W may have several presentations,

that is to say, we may have T = f(I) and T = f(J) for some intervals I ̸= J . It is possible

that the presentation T = f(I) is efficient, but the presentation T = f(J) is not efficient.

This will not hamper the arguments below so long as we recall that the term “efficient”

always refers to a particular choice of presentation of T .

Remark 2.11 (choosing maximal arc fragments). For any Q ∈ G , say Q = B(x,AH 2−k)

for some k ∈ Z and x ∈ Xk, the set Γ∗
UQ

of arc fragments is nonempty, since the core UQ

is contained in the net ball B(x, (1/3)2−k) and x ∈ UQ. In fact, for every set T ′ ∈ Γ∗
UQ

,

there exists an almost flat arc τ ∈ S(λQ) such that T ′ = Image(τ)∩UQ, since Q ∈ G and

G ⊂ Bλ (see Definition 1.11).

Among all sets in Γ∗
UQ

, choose HQ ∈ Γ∗
UQ

such that

HQ ∩ (1/4)Q∗ ̸= ∅ and

diamHQ ≥ diamT ′ for all T ′ ∈ Γ∗
UQ

such that T ′ ∩ (1/4)Q∗ ̸= ∅.
(2.10)

That is, let HQ have maximal diameter among all fragments in UQ of almost flat arcs

that intersect (1/4)Q∗. Let ηQ ∈ S(λQ) denote any arc such that HQ = Image(ηQ) ∩ UQ.
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Existence of HQ is immediate, as Γ∗
UQ

is a nonempty finite set and at least one fragment

in Γ∗
UQ

passes through the center of (1/4)Q∗. If there are several candidates, pick one in

an arbitrary fashion. In principle, HQ may have several connected components; e.g. even

if ηQ traces a line segment, the core UQ need not be a convex set. Nevertheless, HQ always

contains an efficient subarc GQ with diameter nearly equal to that of HQ; see (3.7) below.

By comparison with an arc τ ∈ S(λQ) with x ∈ Image(τ) and (2.6),

(2.11) 0.5 diamQ∗ ≤ diamHQ ≤ 1.00001 diamQ∗ < 3H1(Γ ∩ UQ),

where the diameter of HQ is closer to the lower bound if HQ is “radial” and closer to the

upper bound if HQ is “diametrical”. (The constant 3 is overkill.) Alternatively,

(2.12) 0.49999 diamUQ ≤ diamHQ ≤ diamUQ ≤ 2.00002 diamHQ.

Below, we use diamHQ to the play the role that diamUQ had in [Sch07c].

2.3. Martingale construction. In probability theory [Dur19, Chapter 4], a martingale

defined with respect to an increasing sequence (Fk)k≥0 of σ-algebras is any sequence of

real-valued random variables (Yk)k≥0 such that each Yk is Fk measurable and has finite

expectation, and moreover, the conditional expectations E(Yk+1|Fk) = Yk for all k. The

martingale convergence theorem asserts that if (Yk)k≥0 is a martingale and Yk ≥ 0 for all

k, then Yk converges to some random variable Y almost surely. We will use martingales

to construct weights satisfying (2.4) and (2.5), where the background “probability” is the

finite measure ℓ = H1 Γ.

Let P ∈ G be a fixed ball. For each k ≥ 0, let Fk denote the σ-algebra generated by the

cores UQ, where Q is a descendent of P in G of generation at most k (including P ). Thus,

F0 = {∅, UP ,X\UP ,X} is the σ-algebra generated by {UP}, F1 is the σ-algebra generated

by {UP}∪{UQ : Q ∈ Child(P )}, etc. We remark that F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ BX, the Borel

σ-algebra. We build (Yk)k≥0 inductively. First, assign Y0 to be the F0 simple function

(2.13) Y0 =
diamHP

ℓ(UP )
χUP

,

where HP denotes the maximal arc fragment chosen in Remark 2.11. Note that Y0 is F0

measurable and
∫
Y0 dℓ = diamHP . To continue, suppose that Q ∈ G with UQ ⊂ UP .

Let k ≥ 0 denote the unique integer such that Q is a descendent of P of generation k,

i.e. k = 0 if Q = P , k = 1 if Q ∈ Child(P ), etc. We will define Yk+1|UQ
to take constant

values on elements of Fk+1 contained in UQ. If Child(Q) = ∅, then Q is terminal in G and

we simply set Yk+i|UQ
= Yk|UQ

for all i ≥ 1. Otherwise, Q has at least one and possibly

ℵ0 many children in G ; let Q1, Q2, . . . be an enumeration of Child(Q). We remark that

the cores UQi of children of Q are pairwise disjoint. Now, define the remainder RQ,

(2.14) RQ := UQ \
⋃

i UQi ,

and define the auxiliary quantity sQ,

(2.15) sQ := 101 ℓ(RQ) +
∑

i diamHQi .
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Observe that sQ ≤ 101 ℓ(UQ) < ∞ by (2.11) and countable additivity of measures. Assign

Yk+1|UQ
to be the function

(2.16) Yk+1|UQ
=
(101
sQ

χRQ
+
∑
i

diamHQi

ℓ(UQi)sQ
χQi

)∫
UQ

Yk dℓ;

also assign Yk+i|RQ
= Yk+1|RQ

for all i ≥ 2. Then Yk+1|UQ
is Fk+1 measurable and∫

UQ
Yk+1 dℓ =

∫
UQ

Yk dℓ. As UQ is an atom in the σ-algebra Fk, the equality of the

integrals ensures that E(Yk+1|Fk) = Yk on UQ. Repeating this construction on each Q

that sits k levels below P in G concludes the description of Yk+1 given Yk. We have

verified that Yk+1 is Fk+1 measurable and E(Yk+1|Fk) = Yk. Furthermore, the function

Yk+1 has finite expectation, since
∫
Yk+1 dℓ =

∫
Yk dℓ = · · · =

∫
Y0 dℓ = diamHP < ∞.

Therefore, (Yk)k≥0 is a martingale relative to (Fk)k≥0. By the martingale convergence

theorem, (Yk)k≥0 converges almost surely. Thus, we may define the weight wP to be any

non-negative Borel measurable function such that wP = limk→∞ Yk ℓ-a.e.

The following observation is the key to unlocking (2.4) and (2.5).

Lemma 2.12 (cf. [Sch07c, Lemma 3.25, Steps 2–3]). Suppose there is a universal constant

0 < q < 1 such that diamHQ ≤ q sQ for all Q ∈ G . Then (2.4) and (2.5) hold for G .

Proof. Suppose that Q0 = P , Q1 ∈ Child(Q0), . . . , Qk ∈ Child(Qk−1) is a finite branch of

G below P . Then, for all x ∈ UQk
,

Yk(x) =
diamHQk

ℓ(UQk
)sQk−1

∫
UQk

Yk−1 dℓ =
diamHQk

ℓ(UQk
)sQk−1

diamHQk−1

sQk−2

∫
UQk−1

Yk−2 dℓ

= · · · = diamHQk

ℓ(UQk
)sQk−1

diamHQk−1

sQk−2

· · · diamHQ1

sP

∫
UP

diamHP

ℓ(UP )
dℓ

≤ qk
diamHQk

ℓ(UQk
)

< 3qk

by the hypothesis of the lemma and (2.11). Similarly, for all x ∈ RQk
,

Yk+i(x) = Yk+1(x) =
101

sQk

∫
UQk

Yk dℓ ≤ 101qk+1 for all i ≥ 2.

Now, every point x ∈ UP either belongs to some RQ and Yk(x) is eventually constant, or

x is contained in an infinite branch of G and Yk(x) → 0. Hence

Yk(x) ≤ 101 for all x ∈ X and k ≥ 0, and

wP (x) ≤ 101qk whenever x belongs to a branch UQk
⊂ UQk−1

⊂ · · · ⊂ UP .
(2.17)

Because Yk → wP ℓ-a.e. and Yk is uniformly bounded, Yk → wP in L1(ℓ) by Lebesgue’s

dominated convergence theorem. Thus,∫
Γ

wP dH1 =

∫
wP dℓ = lim

k→∞

∫
Yk dℓ = diamHP ≳AH

diamP

by (2.11). That is, (2.4) holds.
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Finally, if some ball Q0 ∈ G is maximal in G (i.e. Q0 has no parent in G ) and for some

branch Q1 ∈ Child(Q0), . . . , Qk ∈ Child(Qk−1) of G below Q0, a point x ∈ UQk
, then

wQ0(x) + wQ1(x) + · · ·+ wQk
(x) ≤ 101qk + 101qk−1 + · · ·+ 101 ≤ 101

1− q

by (2.17). Since the upper bound is independent of the length of the branch and q is a

universal constant, this yields (2.5). □

2.4. Summary. All things considered, we have shown that in order to prove (2.1) for a

given family B′ ⊂ B, it suffices to verify the hypothesis of Lemma 2.12 for each subfamily

G = G M,j1 associated to B′. (Look between (2.2) and (2.3) for the definition of G .)

3. Outline of the proof of the Main Theorem

Recall that B = B1 ∪ B5. Some balls in B may belong to both families, but this will

not concern us. For the remainder of the paper, we let λ ∈ {1, 5} be fixed and focus on

establishing (2.1) for B′ = Bλ. Throughout the sequel, we demand that

(3.1) ϵ2 ≤ 2−55ϵ1/AH ,

which ensures that at appropriate resolutions, every point in the image of an almost

flat arc lies close to some line segment. Furthermore, this choice guarantees that any

individual ∗-almost flat arc τ ∈ S∗(λQ) is much flatter than the union of the images of

all ∗-almost flat arcs in S∗(λQ). See §4.1 for details. We do not optimize ϵ2.

Remark 3.1. If desired, one can replace the scaling factor λ ∈ {1, 5} in the arguments

below with an arbitrary scaling factor λ ≥ 1. However, if λ is very large, then one must

adjust the values of several parameters, including ϵ2 in the definition of almost flat arcs,

and J and c in the definition of the cores UQ = UJ,c
Q . We restrict to λ ∈ {1, 5}, because

these are the values needed for the proof of Theorem 1.3 presented in [BM22].

Later on, we would like to assume that every almost flat arc τ ∈ S(λQ) that passes

through the net ball for Q has endpoints on the boundary of 2λQ. Exceptions may occur

if an endpoint of the full parameterization lies on the arc, but for each endpoint this

happens at most a finite number of times per scale. Checking (2.1) for such balls is easy.

Lemma 3.2. Let Bλ
0 denote the set of all Q ∈ Bλ for which there exists an arc τ ∈ S(λQ)

such that Image(τ) contains f(0) or f(1) and Image(τ) ∩ (1/3AH )Q ̸= ∅. For all q > 0,

(3.2)
∑
Q∈Bλ

0

βS∗(λQ)(2λQ)q diamQ ≤
∑
Q∈Bλ

0

diamQ ≲AH
H1(Γ).

Proof. Fix any z ∈ X (e.g. z = f(0), f(1)). For the duration of the proof, let Bλ
z denote

the set of all Q ∈ Bλ for which there exists an arc τ ∈ S(λQ) such that Image(τ) contains

z and intersects the net ball (1/3AH )Q. Choose k0 ∈ Z so that AH 2−k0 is the largest

radius of a ball in Bλ
z . For each k ≥ k0, let Ek denote all balls Q ∈ Bλ

z of radius AH 2−k.

Choose vQ ∈ Image(τ) ∩ (1/3AH )Q for each Q ∈ Ek. By (1.9), (4.1), Lemma B.4, and
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Lemma B.5, the set {vQ : Q ∈ Ek} ∩B(z, 4λAH 2−k) has cardinality at most 1 + 36λAH .

Thus, by (2.9),
∑∞

k=k0

∑
Q∈Ek

diamQ ≤ 2(1 + 36λAH )(1/14) diamΓ ≲AH
H1(Γ). □

Our strategy to prove (2.1) for B′ = Bλ \ Bλ
0 is to run Schul’s martingale argument.

That is to say, we must verify that the hypothesis of Lemma 2.12 holds for all Q ∈ G , for

each possible subfamily G = G M,j1 ⊂ Bλ \ Bλ
0 :

(3.3) ∃0<q<1 ∀M ∀j1 ∀Q∈G diamHQ ≤ q sQ,

where the maximal arc fragment HQ associated to Q was chosen in Remark 2.11 and

(3.4) sQ = 101 ℓ(RQ) +
∑

Q′∈Child(Q)

diamHQ′ .

There will be a number of cases, depending on the geometry of arc fragments in UQ as

well as on the geometry of arcs associated to Q′ ∈ Child(Q), the children of Q in the tree

G (see Remark 2.7), and the size of the remainder RQ (2.14). Let us quickly dispense

with an easy case, which is connected to the choice of the constant 101 in (3.4).

Definition 3.3. Let Q ∈ G .

• If ℓ(RQ) > (1/100) diamHQ, then we say that the remainder of Q is large.

• If ℓ(RQ) ≤ (1/100) diamHQ, then we say the remainder of Q is small.

Lemma 3.4 (Case 1: large remainder). If Q ∈ G has large remainder, then diamHQ <

0.9901sQ.

Proof. By (3.4) and definition of large remainder, diamHQ < 100ℓ(RQ) ≤ (100/101)sQ
and 100/101 = 0.9900 < 0.9901. □

Case 1 occurs if, for example, Q has no children in G . Having dealt with Case 1, we may

now make a standing assumption that any Q ∈ G that we examine has small remainder.

At a minimum, this assumption ensures that Child(Q) ̸= ∅. In fact, the picture that the

reader should keep in mind is that HQ (imagine a line segment through the center of UQ)

is intersected by many disjoint cores UQ′ with Q′ ∈ Child(Q). We emphasize that Child(Q)

may be finite or infinite and diamUQ′ can be arbitrarily small relative to diamUQ.

Remark 3.5 (challenges). Broadly speaking, there are two challenges to verifying (3.3)

for Q ∈ G with small remainder. First, as we previously noted in Remark 2.11, each

fragment HQ may be disconnected. In principle, it is possible that

(3.5) diamHQ > ℓ(RQ ∩HQ) +
∑

UQ′∩HQ ̸=∅

diamUQ′ .

Thus, to verify diamHQ ≤ q sQ, we must locate additional cores UQ′ with Q′ ∈ Child(Q)

that do not intersect HQ. In (3.5) and throughout the sequel, when we write Q′ inside

the subscript position of a summation or union, we implicitly mean that, in addition to

any other restrictions, Q′ ranges over all Q′ ∈ Child(Q), with Q fixed nearby.
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Figure 3.1. The cylinder PW over a ball W with respect to a J-projection

ΠT = ΠLT
in ℓ21 (see Appendix B).

Secondly and more seriously, diamUQ′ ≥ diamHQ′ for all children, but diamHQ′ could

be significantly smaller than diamUQ′ if HQ′ is “radial”. For any closed, connected set

T ⊂ T ′ ∈ Γ∗
UQ

, the diameter bound (2.12) only leads to the coarse estimate

diamT ≤ ℓ(RQ ∩ T ) + 2.00002
∑

UQ′∩T ̸=∅

diamHQ′ .(3.6)

This implies diamT ≤ 2.00002sQ, which is insufficient to verify (3.3) as the coefficient

2.00002 ≥ 1. See Lemma 4.6 for a proof of (3.6).

To sidestep the first challenge in Remark 3.5 and avoid complications near the boundary,

we narrow our focus to a smaller region inside of UQ and to an efficient subarc GQ ⊂ HQ.

Remark 3.6 (choosing GQ). For each Q ∈ G , we may invoke Lemma 4.3 with T ′ = HQ

to choose IQ = [aQ, bQ] ⊂ Domain(ηQ) such that GQ := f(IQ) ⊂ HQ ∩ 0.99999Q∗ and

(3.7) |f(aQ)− f(bQ)| = diamGQ > 0.99993 diamHQ.

(A curious reader may jump ahead and read through the proof of Lemma 4.3 at this stage;

it only depends on the preliminary discussion and Lemmas 4.1 and 4.2 found in §4.1.)

Overcoming the second challenge is more complicated. We need to account for length

in RQ and cores UQ′ appearing in a neighborhood of T = GQ that do not necessarily

intersect GQ. Ultimately, the reason that we can improve upon (3.6) is because we can

find a sufficient amount of “extra length” nearby GQ. Roughly speaking, for each UQ′

intersecting GQ, there exist at least two ∗-almost flat arcs in 2λQ′ that intersect λQ′.

To describe improved estimates for balls with small remainder, we need to introduce a

classification of cores UQ′ of Q′ ∈ Child(Q) involving projections onto lines.
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Figure 3.2. On the left, we show a core UQ′ of Q′ ∈ Child(Q) with 2λQ′

containing a tall arc τ . On the right, we show UQ′ with 2λQ′ containing

a wide arc τ . The full set T = GQ associated to the larger core UQ is not

displayed; since diamUQ ≫ diamUQ′ , the set GQ may include the union of

all arcs in the figure. Cores are much smaller than illustrated.

Remark 3.7 (projections, cylinders, and transverse arcs). Given Q ∈ G and a subarc

T = f([a, b]) ⊂ T ′ ∈ Γ∗
UQ

, we define the line LT := f(a)+ span{f(a)− f(b)} and choose a

J-projection ΠT : X → LT onto LT (see Appendix B). We will often identify LT with R.
By default, we choose this identification so that f(a) lies “to the left” of f(b). For every

nonempty, bounded set W ⊂ X, we define the cylinder PW := Π−1
T (ΠT (W )) of W over LT .

If W is connected, then PW is connected (because ΠT is continuous) and its complement

X \ PW has two connected components, which we label P+
W and P−

W consistent with the

orientation of LT . If W is convex, then PW is convex, as well. See Figure 3.1.

We say that an arc τ = f |[c,d] ∈ S∗(λQ) is W -transverse if its two endpoints lie on

opposite sides of PW : Start(τ) = f(c) ∈ P±
W and End(τ) = f(d) ∈ P∓

W .

Definition 3.8 (“necessary” cores). Let Q ∈ G and let T = f([a, b]) ⊂ T ′ ∈ Γ∗
UQ

be an

efficient subarc. Let ΠT be given by Remark 3.7. Relative to T , we declare that a core

UQ′ with Q′ ∈ Child(Q) such that 1.00002Q′
∗ ∩ T ̸= ∅ has:

• Property (N1) if there exists an arc τ ∈ S(λQ′) such that Image(τ) intersects both

1.00002Q′
∗ and the closed region P1.01Q′

∗ \ int(4Q′
∗); we say that τ is tall.

• Property (N2) if there exists an arc τ ∈ S(λQ′) such that Image(τ)∩1.00002Q′
∗ ̸= ∅

and τ is UQ′-transverse; we say that τ is wide. See Figure 3.2.

(These properties do not classify all cores UQ′ with Q′ ∈ Child(Q).) Let N1(T ) and N2(T )

denote the set of all (N1) cores, and all (N2) cores that are not (N1), respectively. Assign

N (T ) := N1(T ) ∪N2(T ).

Remark 3.9. The cores in N (T ) are “necessary,” because we need them to improve

the coarse estimate (3.6). While necessary cores UQ′ lie close to T in the sense that

1.00002Q′
∗ ∩ T ̸= ∅, we do not require them to intersect T . The shadows ΠT (UQ′) of
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necessary cores cover ΠT (T )\ΠT (RQ) up to a small error; see §5 for the details, especially

Definition 5.7 and Lemma 5.8.

We now record the main estimates of the paper.

Lemma I (improving coarse estimate (3.6)). Let Q ∈ G and let T = f([a, b]) ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc. Define scales

(3.8) rT := max{diamQ′
∗ : Q

′ ∈ Child(Q), 1.00002Q′
∗∩T ̸= ∅} and ρT := 2λAH ·212rT .

Suppose F is a (possibly empty) finite family of cores UQ′′ with Q′′ ∈ Child(Q) such that

{2λQ′′ : UQ′′ ∈ F} is pairwise disjoint and F satisfies:

(F) For all UQ′′ ∈ F , we have 2λQ′′ ∩ 16Q′
∗ = ∅ for every core UQ′ ∈ Child(Q) with

diamQ′ > diamQ′′.

Let N2 = N2(T ) and let NF denote the set of all cores UQ′ with Q′ ∈ Child(Q) such that

UQ′ ⊂ 1.99λQ′′ for some UQ′′ ∈ F . Then

diamT − 2ρT ≤ 2.2 ℓ(RQ ∩B9rT (T )) +
∑

UQ′′∈F

diam2λQ′′

+ 1.00016
∑

UQ′∈N2\NF

diamHQ′ + 0.95
∑

UQ′ ̸∈N2∪NF

diamHQ′ .
(3.9)

where the sums in the second line may be further restricted to UQ′ contained in B9rT (T ).

The proof of Lemma I is given in §6, using the setup of §4 and §5. We invite the reader

to compare and contrast (3.9) with (3.6). While the coefficient 1.00016 is substantially

smaller than 2.00002, it is unfortunately still not less than 1. As a consequence, we must

split verification of (3.3) for balls with small remainder into two cases.

Lemma 3.10 (Case 2: many non-N2 cores). If Q ∈ G (with or without small remainder)

and UQ has many non-N2(GQ) cores in the sense that

(3.10)
∑

UQ′ ̸∈N2(GQ)

diamUQ′ > 0.05 diamHQ,

then diamHQ < 0.999sQ.

Proof. By Lemma I, with T = GQ and F = ∅, together with (3.7), the observation

2ρGQ
≪ diamHQ (see (2.7), (2.11)), and (2.12) and (3.10), we have

1.00016sQ = 101.01616 ℓ(RQ) + 1.00016
∑

Q′∈Child(Q)

diamHQ′

≥ diamGQ − 2ρGQ
+ (1.00016− 0.95)

∑
UQ′ ̸∈N2(GQ)

diamHQ′

≥ 0.99993 diamHQ − 0.00001 diamHQ + (0.05016× 0.49999× 0.05) diamHQ.

Rearranging, we obtain diamHQ ≤ 0.99898...sQ. □
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The final case is the most difficult, requiring us to combine estimates inside and outside

of {2λQ′′ : UQ′′ ∈ A} for a family of cores A ⊂ N2(GQ). The family A is chosen according

to the following lemma, which we prove in §7.

Lemma II. If Q ∈ G has small remainder and UQ has few non-N2(GQ) cores in the

sense that

(3.11)
∑

UQ′ ̸∈N2(GQ)

diamUQ′ ≤ 0.05 diamHQ,

then there exists a finite collection A ⊂ N2(GQ) such that {2λQ′′ : UQ′′ ∈ A} is pairwise

disjoint, A satisfies property (F) with T = GQ,

(3.12)
∑

UQ′′∈A

diam2λQ′′ ≥ 0.04 diamHQ, and

(3.13)
∑

UQ′′∈A

diam2λQ′′ ≤ 2 ℓ(RQ) + 0.91
∑

UQ′∈NA

diamHQ′ ,

where NA := {UQ′ : Q′ ∈ Child(Q), UQ′ ⊂ 1.99λQ′′ for some UQ′′ ∈ A}.

Lemma 3.11 (Case 3: few non-N2 cores). If Q ∈ G has small remainder and (3.11)

holds, then diamHQ < 0.9963sQ.

Proof. Let A be given by Lemma II. By Lemma I, with T = GQ and F = A, and (3.13),

diamGQ − 2ρGQ
≤ 4.2ℓ(RQ) + 0.91

∑
UQ′∈NA

diamHQ′ + 1.00016
∑

UQ′ ̸∈NA

diamHQ′ .

Together with (3.7) and the observation 2ρGQ
≪ diamHQ (see (2.7), (2.11)), followed by

(3.12) and (3.13) (again), we obtain

1.00016sQ = 101.01616 ℓ(RQ) + 1.00016
∑

Q′∈Child(Q)

diamHQ′

≥ diamGQ − 2ρGQ
+ (101− 4.2) ℓ(RQ) + (1.00016− 0.91)

∑
UQ′∈NA

diamHQ′

≥ 0.99993 diamHQ − 0.00001 diamHQ + (0.04× 0.09016÷ 0.91) diamHQ.

Rearranging, we obtain diamHQ ≤ 0.99629...sQ. □

In review, the hypothesis of Lemma 2.12 is satisfied with q = 0.999 < 1. This completes

the proof of the Main Theorem, up to verification of Lemma I and Lemma II.

4. Geometric preliminaries and coarse estimates

4.1. Basic geometry with beta numbers. Let’s record consequences of (3.1) on the

flatness of almost flat and ∗-almost flat arcs at some common scales. We use the fact that
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all beta numbers are bounded by 1, ϵ2 = 2−55ϵ1/AH ≤ 2−55/AH , and λ ≤ 5 < 8. Let

Q ∈ G and τ ∈ Λ(λQ). If τ is almost flat, i.e. τ ∈ S(λQ), then there is a line L such that

dist(x, L) ≤ 2ϵ2βΓ(Q)Diam τ ≤ 2−54A−1
H diam2λQ

≤ 2−50A−1
H diamQ ≤ 2−38 diamQ∗ ∀x ∈ Image(τ).

(4.1)

If τ is ∗-almost flat, i.e. τ ∈ S∗(λQ), then there is a line L such that

dist(x, L) ≤ 64ϵ2βΛ(λQ)(2λQ)Diam τ ≤ 2−49A−1
H βS∗(λQ)(2λQ) diam2λQ

≤ 2−45A−1
H diamQ ≤ 2−33 diamQ∗ ∀x ∈ Image(τ),

(4.2)

where in the second inequality we used ϵ1βΛ(λQ)(2λQ) < βS∗(λQ)(2λQ) by Definition 1.11.

(We shall never refer to ϵ1 again.) Recall that 2−M < βS∗(λQ)(2λQ) ≤ 2−(M−1) whenever

Q ∈ G . In particular, for any Q ∈ G and τ ∈ S∗(λQ), the line L from (4.2) also satisfies

(4.3) dist(x, L) ≤ 2−49A−1
H βS∗(λQ)(2λQ) diam2λQ < 2−M−48 diam2λQ ∀x ∈ Image(τ).

Lemma 4.1 (bilateral-β estimate for arcs). Let τ = f |[a,b] be an arc, let L be a line in X,
and let ΠL be a J-projection onto L. If dist(x, L) ≤ β for all x ∈ Image(τ), then

(4.4) |ΠL(x)− x| ≤ 2 dist(x, L) ≤ 2β for all x ∈ Image(τ), and

(4.5) dist(y, Image(τ)) ≤ dist(y,ΠL(Image(τ))) + 2β for all y ∈ L.

Proof. Let y ∈ L. Choose z ∈ ΠL(Image(τ)) such that |y−z| = dist(y,ΠL(Image(τ))) =: δ.

Next, choose x ∈ Image(τ) such that ΠL(x) = z. By Lemma B.4, |z− x| = |ΠL(x)− x| ≤
2 dist(x, L) ≤ 2β. Thus, dist(y, Image(τ)) ≤ |y − x| ≤ |y − z|+ |z − x| ≤ δ + 2β. □

We emphasize that the following inequality (used to prove Lemma 4.3) is valid in any

Banach space; in particular, it does not require uniform nor strict convexity of the norm.

It is instructive to think about the inequality in the case when X = ℓ2∞ = (R2, | · |∞) and

the line segment (c, d) is horizontal.

Lemma 4.2. Let c, d ∈ X, r > 0, and 0 < s < 1. If c, d ∈ B(x, r) and the segment (c, d)

intersects B(x, sr), then |(1−µ)c+µd−x| ≤ r− r(1−s)min{µ, 1−µ} for all 0 ≤ µ ≤ 1.

Proof. Without loss of generality, we may assume that x = 0. By assumption, there exists

0 < ρ < 1 such that z = (1−ρ)c+ρd satisfies |z| ≤ sr. Suppose that y = (1−µ)c+µd for

some 0 ≤ µ ≤ ρ. Then y = (1−ν)c+νz = (1−νρ)c+νρd for some 0 ≤ ν ≤ 1. This shows

µ = νρ; in particular, µ ≤ ν. Hence |y| ≤ (1−ν)|c|+ν|z| ≤ (1−ν)r+νsr ≤ r−r(1−s)µ.

The case ρ ≤ µ ≤ 1 is similar, except that µ should be replaced by 1− µ. □

Lemma 4.3 (existence of GQ). Let Q ∈ G and let T ′ ∈ Γ∗
UQ

, say T ′ = Image(τ)∩UQ for

some τ = f |[a,b] ∈ S(λQ). If T ′ ∩ (1/4)Q∗ ̸= ∅, then there exists [aT , bT ] ⊂ [a, b] such that

T := f([aT , bT ]) lies in T ′ ∩ 0.99999Q∗, and |f(aT )− f(bT )| = diamT > 0.99993 diamT ′.

Moreover, the subarc T intersects 0.25007Q′
∗.
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Figure 4.1. Exaggerated picture (curve should be flatter) of ηQ such that

HQ has two connected components. The dots indicate points in HQ with

distance equal to diamHQ. (Arc through center of Q∗ is not displayed.)

Proof. Because τ is almost flat, we can find a line L such that (4.1) holds. Further, since

T ′ intersects (1/4)Q∗, it follows that diamT ′ ≥ (3/8) diamQ∗ > (1/4) diamQ∗ and

(4.6) dist(x, L) ≤ 2−38 diamQ′
∗ ≤ 2−36 diamT ′ ∀x ∈ Image(τ); 2−38 < 10−10.

Let ΠL be a J-projection onto L. Then, by Lemma 4.1,

(4.7) |ΠL(x)− x| < 0.00000 00002 diamQ′
∗ ≤ 0.00000 00008 diamT ′ ∀x ∈ Image(τ).

Using (4.7) and the triangle inequality, we obtain

(4.8) |ΠL(x)− ΠL(y)| ≤ |x− y| < 1.00000 002 |ΠL(x)− ΠL(y)|

whenever x, y ∈ Image(τ) and |x− y| ≥ 0.1 diamT ′. Identifying L with R, we can define

c := min{ΠL(x) : x ∈ T ′} and d := max{ΠL(x) : x ∈ T ′}.

Choosing any u, v ∈ T ′ such that |u−v| = diamT ′ = diamT ′ and using (4.8), we see that

(4.9) diamT ′ ≥ d− c ≥ |ΠL(u)− ΠL(v)| > (1.00000 002)−1 diamT ′.

Suppose c+ 0.00003 diamT ′ ≤ p ≤ d− 0.00003 diamT ′ and let x ∈ Π−1
L (p) ∩ Image(τ).

By the first inequality in (4.9), p = (1−µ)c+µd for some 0 < µ < 1 with min{µ, 1−µ} ≥
0.00003. We would like to use Lemma 4.2 to show that x ∈ 0.99999Q∗. Let’s check the

hypothesis of the lemma. Certainly, c, d ∈ 1.000011Q∗ and the segment (c, d) intersects

0.25000 00002Q∗ ⊂ 0.25 · 1.000011Q∗, since T ′ ⊂ UQ ⊂ 1.00001Q∗, T
′ ∩ (1/4)Q∗ ̸= ∅, and

(4.7) is in effect. By Lemma 4.2, applied with s = 0.25 and min{µ, 1− µ} ≥ 0.00003, we

discover p ∈ 0.99997 75 · 1.000011Q∗ ⊂ 0.99998 85Q∗. Thus, by (4.7), x ∈ 0.99999Q∗.

To continue, because ΠL is continuous and Image(τ) is connected, there must exist

[ãT , b̃T ] ⊂ [a, b] such that ΠL(f(ãT )) = c+ .00003 diamT ′, ΠL(f(b̃T )) = d− .00003 diamT ′

(or vice-versa), and ΠL(f(t)) lies in between for all t ∈ [ãT , b̃T ]. Define T̃ := f([ãT , b̃T ]).
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On the one hand, by the previous paragraph, we have T̃ ⊂ Image(τ) ∩ 0.99999Q∗ =

T ′ ∩ 0.99999Q∗, since 0.99999Q∗ ⊂ UQ and T ′ ∈ Γ∗
UQ

. Hence, by (4.7),

diamT ′ ≥ diam T̃ ≥ |f(ãT )− f(b̃T )| ≥ d− c− 0.00006 diamT ′ − 0.00000 00016 diamT ′.

Using the last inequality in (4.9), it follows that diam T̃ > 0.99993 997 diamT ′. On the

other hand, if s, t ∈ [ã, b̃], ΠL(f(s)) < ΠL(f(t)), and ΠL(f(s)) ≥ c + 0.00003 01 diamT ′

or ΠL(f(t)) ≤ d− 0.00003 01 diamT ′, then

|f(s)− f(t)| ≤ d− c− 0.00006 01 diamT ′ + 0.00000 00016 diamT ′ < 0.99993 991 diamT ′,

whence |f(s)− f(t)| < diam T̃ . Choose any aT , bT ∈ [ãT , b̃T ] such that ΠL(aT ) < ΠL(bT )

and |f(aT )− f(bT )| = diam T̃ . By the previous computation, we necessarily have

(4.10) ΠL(aT ) < c+ 0.00003 01 diamT ′ and ΠL(bT ) > d− 0.00003 01 diamT ′.

Define T := f([aT , bT ]). Then T is an efficient subarc of T ′ ∩ 0.99999Q∗ with diamT =

diam T̃ > 0.99993 diamT ′.

Lastly, let y be any point such that y ∈ (c, d) ∩ 0.25000 00002Q∗. Shift from y to a

point y′ ∈ ΠL(T ) as needed. By (4.10), we can do this in such a way that |y − y′| <
0.00003 01 diamT ′. Then we can find at least one point x ∈ T such that ΠL(x) = y′ and

|x− y| < 0.00003 011 diamT ′ by (4.7). Since diamT ′ is at most 2.00002 times the radius

of the ball Q∗, we conclude that x ∈ T lies in 0.25006 023Q∗. □

4.2. Geometry of N1 cores. For each necessary core UQ′ , we define neighborhoods DQ′ ,

EQ′ , and FQ′ . Their relationship is that EQ′ is slightly smaller than DQ′ , FQ′ is slightly

smaller than EQ′ , and UQ′ is smaller than FQ′ . In §6, we use “extra length” from diamHQ′′

associated to cores UQ′′ that intersect FQ′ and lie inside of EQ′ to “pay for” the length of

the interval ΠT (DQ′). The definition of the neighborhoods depends on the type of core.

For the definition of N1 cores and tall subarcs, see Definition 3.8.

Definition 4.4. Let Q ∈ G and let T = f([a, b]) ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc. For

all UQ′ ∈ N1(T ), we define neighborhoods DQ′ ⊃ EQ′ ⊃ FQ′ of UQ′ by

DQ′ := P1.04Q′
∗ ∩ 4Q′

∗, EQ′ := P1.03Q′
∗ ∩ 3.99Q′

∗, FQ′ := P1.02Q′
∗ ∩ 3.98Q′

∗.

Lemma 4.5 (tall subarcs). Let Q ∈ G and T = f([a, b]) ⊂ T ′ ∈ Γ∗
UQ

be an efficient

subarc. If UQ′ ∈ N1(T ) and τ ∈ S(λQ′) is a tall arc, then there exists a subarc Tτ of

Image(τ) ∩ FQ′ \ UQ′ such that diamTτ ≥ 1.48 diamQ′
∗.

Proof. Pick any t0, t3 ∈ Domain(τ) such that τ(t0) ∈ P1.01Q′
∗ \ int(4Q′

∗) and τ(t3) ∈
1.00002Q′

∗. Without loss of generality, suppose that t0 < t3. We let t2 > t0 be the first

time after t0 with τ(t2) ∈ ∂(1.00003Q′
∗). Then we define t1 := max{t ∈ [t0, t2] : τ(t) ∈

∂(3.97999Q′
∗)}.

We claim that the subarc Tτ := τ([t1, t2]) satisfies the required conditions. Foremost,

diamTτ ≥ |τ(t1)− τ(t2)| ≥ 2.97996 radiusQ′
∗ = 1.48998 diamQ′

∗. Also, Tτ ⊂ 3.98Q∗ \UQ′

by the way we defined t1 and t2. It remains to verify that τ([t1, t2]) ⊂ P1.02Q′
∗ . First note
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that we arranged for τ(t0) and τ(t2) to lie in P1.01Q′
∗ . Second note that τ is almost flat.

Consulting (4.1) and (4.4), we can find a line L and J-projection ΠL onto L such that

(4.11) |ΠL(x)− x| ≤ 2 dist(x, L) ≤ 2−37 diamQ′
∗ for every x ∈ Image(τ).

Hence we can locate y, z ∈ L nearby τ(t0) and τ(t3) such that y ̸∈ 3.999Q′
∗, z ∈ 1.001Q′

∗,

and y, z ∈ P1.011. By convexity, the whole segment [y, z] ⊂ P1.011Q′
∗ too. From (4.11),

the fact that 2−37 ≪ 0.001, and the triangle inequality it follows that τ([t1, t2]) ⊂
B2−37 diamQ′

∗([x, y]) ⊂ P1.012Q′
∗ , as well. This shows—with plenty of room to spare—that

Tτ = τ([t1, t2]) is a subarc of Image(τ) ∩ FQ′ \ UQ′ . □

Lemma 4.6. If Q ∈ G and T ⊂ Γ∩UQ is a closed, connected set, then the coarse estimate

(3.6) holds for T .

Proof. Choose x, y ∈ T such that |x− y| = diamT and let ΠT be a J-projection onto the

line through x and y; see Appendix B. Since ΠT is 1-Lipschitz, ΠT fixes x and y, and T

is connected, ΠT (T ) = [x, y]. Since T ⊂ Γ∩UQ, we can cover T by RQ ∩ T and the set of

cores UQ′ of Q′ ∈ Child(Q) such that UQ′ ∩ T ̸= ∅. By countable subadditivity of H1, the

isodiametric inequality H1(A) ≤ diamA for all sets A ⊂ R, and ΠT being 1-Lipschitz,

(4.12) diamT ≤ H1(ΠT (RQ ∩ T )) +
∑

UQ′∩T ̸=∅

H1(ΠT (UQ′)) ≤ ℓ(RQ ∩ T ) +
∑

UQ′∩T ̸=∅

diamUQ′ .

Hence (3.6) follows from (4.12) and (2.12). □

Lemma 4.7. Let Q ∈ G and let T ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc. If UQ′ ∈ N1(T ),

then there is a set MQ′ of cores UQ′′ with Q′′ ∈ Child(Q) and UQ′′ ∩ FQ′ ̸= ∅ such that

(4.13) diamΠT (DQ′) < 0.5 ℓ(RQ ∩ FQ′) + 0.84
∑

UQ′′∈MQ′

diamHQ′′ .

Proof. Choose a tall arc τ ∈ S(λQ′) and let Tτ be the subarc of Image(τ) ∩ FQ′ \ UQ′

given by Lemma 4.5. Define MQ′ = {UQ′} ∪ {UQ′′ : UQ′′ ∩ Tτ ̸= ∅}. Applying the coarse

estimate (3.6), we find that

1.48 diamQ′
∗ ≤ diamTτ ≤ ℓ(RQ ∩ Tτ ) + 2.00002

∑
UQ′′∈MQ′\{UQ′}

diamHQ′′ .

We also know that diamQ′
∗ ≤ diamUQ′ ≤ 2.00002 diamHQ′ by (2.12). Hence

2.38461 diam1.04Q′
∗ ≤ 2.48 diamQ′

∗ ≤ ℓ(RQ ∩ Tτ ) + 2.00002
∑

UQ′′∈MQ′

diamHQ′′ .

Since diamΠT (DQ′) ≤ diam1.04Q′
∗ and Tτ ⊂ FQ′ , this yields (4.13). □

4.3. Geometry of N2 cores. Recall from Definition 3.8 that every core UQ′ ∈ N2(T )

admits a wide arc. To prove Lemma I, we will need to distinguish between the case that

some wide arc τ lies near the center of Q′
∗ and the case that every wide arc is far from

the center of Q′
∗.
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Definition 4.8. Let Q ∈ G and let T ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc. Suppose

that UQ′ ∈ N2(T ). We say that UQ′ ∈ N2.1(T ) if there exists a wide arc τ such that

Image(τ) ∩ 2−14Q′
∗ ̸= ∅. Otherwise, we say that UQ′ ∈ N2.2(T ).

Definition 4.9. Let Q ∈ G and T = f([a, b]) ⊂ T ′ ∈ Γ∗
UQ′ be an efficient subarc. For all

UQ′ ∈ N2.1(T ), we define neighborhoods DQ′ ⊃ EQ′ ⊃ FQ′ of UQ′ by

DQ′ := 1.00002Q′
∗, EQ′ := UQ′ , FQ′ := UQ′ .

For all UQ′ ∈ N2.2(T ), we define neighborhoods DQ′ ⊃ EQ′ ⊃ FQ′ of UQ′ by

DQ′ := 16Q′
∗, EQ′ := 15.99Q′

∗, FQ′ := 15.98Q′
∗.

Lemma 4.10. Let Q ∈ G and let T ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc. If UQ′ ∈ N2.1(T ),

then diamDQ′ ≤ 1.00016 diamHQ′.

Proof. Let τ be a wide arc such that Image(τ) ∩ 2−14Q′
∗ ̸= ∅. By (4.1), there exists a

line L such that dist(p, L) ≤ 2−38 diamQ′
∗ for all p ∈ Image(τ). Since τ is wide and

Image(τ) intersects 2−14Q′
∗, the set Image(τ) meets both connected components of ∂Q′

∗ ∩
B2−38 diamQ′

∗(L); choose points y, z ∈ Image(τ) ∩ ∂Q′
∗, one from each of the components.

Let x denote the center of Q′
∗; then dist(x, Image(τ)) ≤ 2−14 radiusQ′

∗ = 2−15 diamQ′
∗. By

our assertions above, we can find points x′, y′, z′ ∈ L, with x′ lying between y′ and z′, such

that |x−x′| ≤ (2−15+2−38) diamQ′
∗, |y− y′| ≤ 2−38 diamQ′

∗, and |z− z′| ≤ 2−38 diamQ′
∗.

Define y′′ = y′ + x − x′ and z′′ = z′ + x − x′, so that y′′ and z′′ lie on a line through x,

with x in between y′′ and z′′. Now,

|y′′ − x| ≥ |y − x| − |y′′ − y′| − |y′ − y| ≥ (1/2− 2−15 − 2−37) diamQ′
∗.

Similarly, |z′′ − x| ≥ (1/2− 2−15 − 2−37) diamQ′
∗. Hence |y′′ − z′′| = |y′′ − x|+ |x− z′′| ≥

(1− 2−14 − 2−36) diamQ′
∗. It follows that

|y − z| ≥ |y′′ − z′′| − |y′′ − y′| − |y′ − y| − |z′′ − z′| − |z′ − z| ≥ (1− 2−13 − 2−35) diamQ′
∗.

Thus, diamHQ′ ≥ |y−z| ≥ 0.99987 diamQ′
∗ ≥ 0.99985 diamDQ′ . The lemma follows. □

Lemma 4.11. Let Q ∈ G and let T ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc. If UQ′ ∈ N2.2(T ),

then there exists a finite set Y of efficient subarcs of arc fragments in Γ∗
FQ′ such that the sets

{1.00002Q′
∗}∪{B2−40 diamQ′

∗(Y ) : Y ∈ Y} are pairwise disjoint, diamY ≥ 0.00021 diamQ′
∗

for all Y ∈ Y, and
∑

Y ∈Y diamY ≥ 22.46 diamQ′
∗. (The cardinality of Y is 3 or 4.)

Proof. Since UQ′ ∈ N2.2(T ), we can find a wide arc τ ∈ S(λQ′) such that Image(τ)

intersects 1.00002Q′
∗ and is disjoint from 2−14Q′

∗. Let ξ ∈ S(λQ′) be any arc whose image

contains the center of Q′. Since the image of τ does not contain the center of Q′, the

arcs τ and ξ are distinct. The family Y will be built from subarcs of Image(τ) ∩ FQ′ and

Image(ξ) ∩ FQ′ .

Let A denote the annulus 15.98Q′
∗ \ int(1.00004Q′

∗), which is contained in FQ′ . Choose

a subarc T1 of Image(ξ) ∩ A with one endpoint on ∂(15.98Q′
∗) and one endpoint on

∂(1.00004Q′
∗) so that diamT1 ≥ 14.97996 radiusQ′

∗; cf. proof of Lemma 4.5. Similarly,
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Figure 4.2. Separated subarcs Y associated to N2.2(T )-type cores UQ′ .

Either #Y = 3 (left) or #Y = 4 (right). The arc T is not displayed.

we may find two subarcs T2 and T3 of Image(τ) ∩ A with endpoints in ∂15.98Q′
∗ ∩ P+

UQ′

and ∂(1.00004Q′
∗) and endpoints in ∂(15.98Q′

∗) ∩ P−
UQ′ and ∂(1.00004Q′

∗), respectively.

Observe that min{diamT2, diamT3} ≥ 14.97996 radiusQ′
∗, and the total diameter of the

three subarcs is at least 44.93988 radiusQ′
∗ = 22.46994 diamQ′

∗.

Now, we show that B2−40 diamQ′
∗(T2) and B2−40 diamQ′

∗(T3) are disjoint. Let Lτ be a line

such that (4.1) holds for Lτ and all x ∈ Image(τ). In particular,

B2−40 diamQ′
∗(T2 ∪ T3) ⊂ B(2−38+2−40) diamQ′

∗(Lτ ) ⊂ B2−37 diamQ′
∗(Lτ ).

By assumption, Image(τ) ∩ 1.00002Q′
∗ ̸= ∅. Hence there exists w̃ ∈ Image(τ) ∩ 1.00002Q′

∗
such that B(w̃, 0.00002 radiusQ′

∗) ⊂ 1.00004Q′
∗. Let w ∈ Lτ ∩ B(w̃, 2−38 diamQ′

∗). Note

that B(w, 0.00001 radiusQ′
∗) ⊂ 1.00004Q′

∗. Labeling the two connected components of

Lτ \B(w, 0.00001 radiusQ′
∗) by L+

τ , L
−
τ we conclude that

gap(B2−40 diamQ′
∗(T2), B2−40 diamQ′

∗(T3)) ≥ gap(B2−37 diamQ′
∗(L

+
τ ), B2−37 diamQ′

∗(L
−
τ ))

≥ (0.00001− 2−35) diamQ′
∗ > 0.000009 diamQ′

∗.
(4.14)

Observe that for any arc we may shrink its domain as needed to produce an efficient arc

of the same diameter. Thus, it remains to obtain a subarc or subarcs of T1 which satisfy

the disjointness and diameter estimates in the conclusion of the lemma.

Let Lξ be a line such that (4.1) holds with Lξ and all x ∈ Image(ξ). As with τ, we have

B2−40 diamQ′
∗(T1) ⊂ B(2−38+2−40) diamQ′

∗(Lτ ) ⊂ B2−37 diamQ′
∗(Lξ).

If B2−40 diamQ′
∗(T1) and B2−40 diamQ′

∗(T2 ∪ T3) do not intersect, by the previous paragraph

we are done. If, on the other hand, B2−40 diamQ′
∗(T1) and B2−40 diamQ′

∗(Lτ ) intersect, then

B2−37 diamQ′
∗(Lξ) and B2−37 diamQ′

∗(Lτ ) intersect. In this case, we will either shrink T1 or

split T1 into two subarcs to obtain the desired disjointness. See Figure 4.2.
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Suppose then that B2−37 diamQ′
∗(Lτ ) intersects B2−37 diamQ′

∗(Lξ). Then, Lξ intersects

B2 := B2−35 diamQ′
∗(Lτ ) by the triangle inequality. Define

r1 := min{|z − x| : z ∈ Lξ ∩B2} and r2 := max{|z − x| : z ∈ Lξ ∩B2},

where as before x denotes the center of Q′. Our goal is to show that r2 − r1 is relatively

small. There are two cases.

For the easier case, suppose that r2 ≤ 1.00054 radiusQ′
∗ or r1 ≥ 15.9795 radiusQ′

∗.

Replace T1 with a subarc T̃1 using the annulus 15.97949Q′
∗ \ int(1.00055Q′

∗) instead of A.

Then diam T̃1 ≥ 14.97894 radiusQ′
∗ and diam T̃1+diamT2+diamT3 ≥ 22.46943 diamQ′

∗.

Furthermore, because T̃1 ⊂ T1 and T̃1 avoids {w : |w − x| ∈ [r1, r2]},

gap(B2−40 diamQ′
∗(T̃1), B2−40 diamQ′

∗(T2 ∪ T3))

≥ gap(B2−37 diamQ′
∗ (Lξ ∩ (15.97949Q′

∗ \ int(1.00055Q′
∗)) , B2−37 diamQ′

∗(Lτ ))

≥ (0.00001− 2−36) diamQ′
∗ > 0.

Thus, the neighborhoods B2−40 diamQ′
∗(T̃1) and B2−40 diamQ′

∗(T2 ∪ T3) are disjoint.

For the harder case, suppose that

(4.15) r2 > 1.00054 radiusQ′
∗ and r1 < 15.9795 radiusQ′

∗.

Let y ∈ Lξ∩B2∩∂B(x, r1). Let z ∈ Lξ∩B2∩∂B(x, r2). By translation, we may replace Lτ

with a line (which we relabel as Lτ ) such that y ∈ Lξ ∩Lτ . Since we translate by at most

2−35 diamQ′
∗, the triangle inequality implies that B2−40(Image(τ)) ⊂ B2−34 diamQ′

∗(Lτ ) and

dist(x, Lτ ) ≥ dist(x, Image(τ))− sup
w∈Image(τ)

dist(w,Lτ ) ≥ (2−15 − 2−34) diamQ′
∗.

Now, choose J-projections Πξ and Πτ onto Lξ and (the relabeled line) Lτ , respectively.

Then the points xξ := Πξ(x), xξτ := Πτ (xξ), and zτ := Πτ (z) satisfy:

|xξ − xξτ | ≥ |x− xξτ | − |x− xξ| ≥ (2−15 − 2−34) diamQ′
∗,(4.16)

|xξ − y| ≤ |x− y|+ |x− xξ| ≤ 15.9795 radiusQ′
∗ + 2−38 diamQ′

∗ < 23 diamQ′
∗,(4.17)

|z − y| ≥ |z − x| − |x− y| ≥ r2 − r1, and(4.18)

|z − zτ | ≤ 2 dist(z, Lτ ) ≤ 2−33 diamQ′
∗.(4.19)

By “similar triangles”, it follows that

(4.20) r2 − r1 ≤ |z − y| = |xξ − y| |z − zτ |
|xξ − xξτ |

≤ (23 diamQ′
∗)

2−33

2−15 − 2−34
.

Hence r2 − r1 < 2−14 diamQ′
∗.

Since ξ contains x and (4.1) is in effect we may translate Lξ (by at most 2−38 diamQ′
∗)

to obtain a line L̃ξ which contains x. Thus, each component of L̃ξ ∩ B(x, r2) \ B(x, r1)

has diameter r2 − r1. By (4.1), and (4.15), and the triangle inequality, we estimate that

each component L±
ξ of Lξ ∩ (Br2(x) \Br1(x)) satisfies

diamL±
ξ ≤ r2 − r1 + 2−37 diamQ′

∗ ≤ (2−14 + 2−37) diamQ′
∗.



SUBSETS OF RECTIFIABLE CURVES IN BANACH SPACES II 27

In particular, diamB2−35 diamQ′
∗(L

±
ξ ∩ (Br2(x) \Br1(x))) ≤ (2−14 + 2−34 + 2−37) diamQ′

∗ ≤
0.000062 diamQ′

∗. This estimate, and the assumption (4.15) imply that we may choose

radii r̃1 and r̃2 such that

1.00047 radiusQ′
∗ < r̃1 < r1 < r2 < r̃2 < 15.97957 radiusQ′

∗

and r̃2 − r̃1 = 0.00007 radiusQ′
∗. Let T̃1.1 be a subarc of T1 ∩ B(x, r̃1) \ int(1.00005Q′

∗)

with one endpoint in ∂(1.00005Q′
∗) and one endpoint in ∂B(x, r̃1). Define T̃1.2 similarly

using the annulus 15.97999Q′
∗ \ int(B(x, r̃2)).

We now demonstrate that the neighborhoods B2−40 diamQ′
∗(T̃1.1), B2−40 diamQ′

∗(T̃1.2), and

B2−40 diamQ′
∗(T2 ∪ T3) are pairwise disjoint. First, note that

gap(B2−40 diamQ′
∗(T̃1.1), B2−40 diamQ′

∗(T̃1.2))

≥ gap(B3−37(Lξ ∩B(x, r̃1)), B3−37(Lξ ∩B(x, r̃2)
c)) ≥ (0.00007− 2−36) diamQ′

∗ > 0.

Thus, the neighborhoods B2−40 diamQ′
∗(T̃1.1) and B2−40 diamQ′

∗(T̃1.2) are pairwise disjoint.

They are also pairwise disjoint from B2−40 diamQ′
∗(T2 ∪ T3), because

gap(B2−40 diamQ′
∗(T̃1.1 ∪ T̃1.2), B2−40 diamQ′

∗(T2 ∪ T3))

≥ gap
(
B2−37 (Lξ ∩ (B(x, r̃1) ∪B(x, r̃2)

c)) , B2−37 diamQ′
∗(Lτ )

)
≥ (2−35 − 2−36) diamQ′

∗ > 0.

By definition of r̃1, r̃2, min{diam T̃1.1, diam T̃1.2} ≥ 0.00042 radiusQ′
∗ = 0.00021 diamQ′

∗
and diam T̃1.1+diam T̃1.2 ≥ (15.97999−1.00005−0.00007) radiusQ′

∗ = 14.97987 radiusQ′
∗.

Thus, diam T̃1.1 + diam T̃1.2 + diamT2 + diamT3 ≥ 22.46989 diamQ′
∗. This concludes the

proof of the lemma. □

Lemma 4.12. Let Q ∈ G and let T ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc. If UQ′ ∈ N2.2(T ),

then there is a family MQ′ of cores UQ′′ with Q′′ ∈ Child(Q) and UQ′′ ∩ FQ′ ̸= ∅ such that

(4.21) diamDQ′ < 0.7 ℓ(RQ ∩ FQ′) + 1.37
∑

UQ′′∈MQ′

diamHQ′′ .

Proof. Given Y from Lemma 4.11, let MQ′ = {UQ′′ : Q′′ ∈ Child(Q), UQ′′ ∩ FQ′ ̸= ∅}. If
there happens to exist UQ′′ ∈ MQ′ with diamQ′′ > diamQ′, then

diamHQ′′ ≥ 0.49999 diamQ′′
∗ ≥ 298 diamQ′

∗ ≫ diamDQ′

and (4.21) holds trivially. Assume otherwise that diamQ′′ ≤ diamQ′ for every core

UQ′′ ∈ MQ′ , so that diamUQ′′ ≤ 2−98 diamQ′
∗ for all UQ′′ ∈ MQ′ \ {UQ′}. Because

diamQ′
∗ ≤ 2.00002 diamHQ′ and (3.6) holds for each Y ∈ Y , Lemma 4.11 implies that

(1 + 22.46) diamQ′
∗ ≤ ℓ(RQ ∩ FQ′) + 2.00002

∑
UQ′′∈MQ′

diamHQ′′ .(4.22)

Since diamDQ′ = 16 diamQ′
∗, this estimate yields (4.21). □
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4.4. Geometry of unnecessary cores.

Definition 4.13. Let ΠT be a J-projection onto some line LT in X. For any line L in X,
the antislope as(L,ΠT ) of L relative to ΠT is the unique number in [0, 1] given by

(4.23) as(L,ΠT ) =
|ΠT (u)− ΠT (v)|

|u− v|
for any u, v ∈ L with u ̸= v.

Remark 4.14. The antislope as(L,ΠT ) is well-defined (i.e. the quantity in (4.23) does not

depend on the choice of points u, v) by linearity of J-projections onto linear subspaces.

At one extreme, as(L,ΠT ) = 0 if and only if L is vertical in the sense that ΠT (u) = ΠT (v)

for every u, v ∈ L. At the other extreme, as(L,ΠT ) = 1 if and only if L is parallel to LT .

Lemma 4.15 (location of endpoints). Let Q ∈ G and let T = f([a, b]) ⊂ T ′ ∈ Γ∗
UQ

be an

efficient subarc. If Q′ ∈ Child(Q) and 1.00002Q′
∗∩T ̸= ∅, but the core UQ′ is “unnecessary”

in the sense that UQ′ ̸∈ N (T ) = N1(T ) ∪ N2(T ), then for all arcs τ = f |[c,d] ∈ S(λQ′)

such that Image(τ) ∩ 1.00002Q′
∗ ̸= ∅,

either {f(c), f(d)} ⊂ P+
15Q′

∗
∩ ∂(2λQ′) or {f(c), f(d)} ⊂ P−

15Q′
∗
∩ ∂(2λQ′);

moreover, if L is any line such that (4.1) holds for τ , then as(L,ΠT ) > 0.001.

Proof. Let Q′ be given as in the statement. Fix any τ = f |[c,d] ∈ S(λQ′). Because Q′ ̸∈ Bλ
0

(see Lemma 3.2), the endpoints f(c) and f(d) of τ lie on ∂(2λQ′). Since UQ′ ̸∈ N1(T ),

we know that f(c), f(d) ̸∈ P1.01Q′
∗ . Suppose without loss of generality that f(c) ∈ P+

1.01Q′
∗

(see Remark 3.7). Since UQ′ ̸∈ N2(T ), we have f(d) ∈ P+
1.01Q′

∗
, as well. To complete the

proof, it suffices to show that f(c), f(d) ̸∈ P15Q′
∗ .

Let L be a line such that (4.1) holds for τ . Since Image(τ)∩1.00002Q′
∗ ̸= ∅, it follows that

L∩1.000021Q′
∗ ̸= ∅. Choose any u ∈ L∩1.000021Q′

∗. Similarly, let x ∈ Image(τ)∩∂(4Q′
∗).

Since τ is not tall, x ̸∈ P1.01Q′
∗ . Thus, by (4.1), there exists v ∈ L∩4.00001Q′

∗∩P+
1.00999Q′

∗
.

Finally, choose w ∈ L such that |w − f(c)| ≤ 2−38 diamQ′
∗. This more than guarantees

w ∈ X \ (213λAH − 1)Q′
∗ ⊂ X \ 8191Q′

∗. Now,

|ΠT (w)− ΠT (u)| = |w − u| |ΠT (v)− ΠT (u)|
|v − u|

≥ (8189 radiusQ′
∗)
1.00999− 1.000021

4.00001 + 1.000021

≥ 16.01697 radiusQ′
∗.

Hence w lies outside of P15.01676Q′
∗ , and therefore, f(c) certainly lies outside of P15Q′

∗ . An

identical argument shows that f(d) lies outside of P15Q′
∗ , as well. Finally, from the display,

we read off as(L; ΠT ) ≥ (1.00999− 1.000021)/(4.00001 + 1.000021) = 0.00199.... □

Lemma 4.16 (overlapping arcs). Let Q ∈ G and let T = f([a, b]) ⊂ T ′ ∈ Γ∗
UQ

be

an efficient subarc. Let Qσ, Qτ ∈ Child(Q) with diamQσ ≤ diamQτ and suppose that

there is a point x ∈ ΠT (1.00002Q
σ
∗ ∩ T ) ∩ ΠT (1.00002Q

τ
∗ ∩ T ), but UQσ , UQτ ̸∈ N (T ).

For any arcs σ ∈ S(λQσ) and τ ∈ S(λQτ ) such that Domain(σ), Domain(τ) ⊂ [a, b],

x ∈ ΠT (Image(σ)) ∩ ΠT (Image(τ)), and Domain(σ) ∩ Domain(τ) ̸= ∅, either
(i) diamQσ < diamQτ and Domain(σ) ⊂ Domain(τ), or
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(ii) diamQσ = diamQτ and [c, d] := Domain(σ) ∪ Domain(τ) satisfies

either {f(c), f(d)} ⊂ P+
12Qσ

∗
∩ P+

12Qτ
∗

or {f(c), f(d)} ⊂ P−
12Qσ

∗
∩ P−

12Qτ
∗
.

Proof. Firstly, suppose that diamQσ < diamQτ . Let xσ denote the center of Qσ and pick

yσ ∈ 1.00002Qσ
∗ ∩ Image(σ) ∩ Px. Here Px is shorthand for P{x} (see Remark 3.7). Then,

for any zσ ∈ Image(σ) ⊂ 2λQσ,

|ΠT (zσ)− x| ≤ |zσ − yσ| ≤ |zσ − xσ|+ |xσ − yσ|
≤ (1 + 1.00002 · 2−13) radius 2λQσ ≤ 2−99A−1

H radius 2λQτ ≤ 2−83 radiusQτ
∗.

Thus, f(t) ∈ P2Qτ
∗ for all t ∈ Domain(σ). However, the endpoints Start(τ),End(τ) ̸∈ P15Qτ

∗

by Lemma 4.15. Therefore, Domain(σ)∩Domain(τ) ̸= ∅ implies Domain(σ) ⊂ Domain(τ).

Secondly, suppose that diamQσ = diamQτ and Qσ = Qτ . Since the arcs in Λ(λQτ )

have pairwise disjoint domains (see Definition 1.9), Domain(σ)∩Domain(τ) implies σ = τ .

Hence the conclusion in this case follows from Lemma 4.15.

Finally, suppose that diamQσ = diamQτ , but Qσ ̸= Qτ . Let xσ, yσ be given as above;

similarly, let xτ denote the center of Qτ and choose yτ ∈ 1.00002Qτ
∗ ∩ Image(τ) ∩ Px.

Using the triangle inequality to form nested balls centered at xσ and yσ and nested balls

centered at xτ and yτ , plus the fact that radiusΠT (B) = radiusB for any ball B, one can

show that

(4.24) P±
15Qτ

∗
⊂ P±

(15−2.00004)Qσ
∗
⊂ P±

12Qσ
∗

and P±
15Qσ

∗
⊂ P±

(15−2.00004)Qτ
∗
⊂ P±

12Qτ
∗
.

Let [cσ, dσ] and [cτ , dτ ] denote the domains of σ and τ , respectively. If it happens that

[cσ, dσ] ⊂ [cτ , dτ ] or [cτ , dτ ] ⊂ [cσ, dσ] or dσ = cτ or dτ = cσ, then the conclusion follows

immediately from Lemma 4.15 and (4.24). Thus, without loss of generality, we may focus

on the case that c = cσ < cτ < dσ < dτ = d and Start(σ),End(σ) ∈ P−
15Qσ

∗
⊂ P−

12Qσ
∗
.

Suppose to reach a contradiction that Start(τ),End(τ) ∈ P+
15Qτ

∗
⊂ P+

12Qσ
∗
. We will show

that this violates the antislope estimate in Lemma 4.15. Since diamQσ = diamQτ , but

Qσ ̸= Qτ , the centers of the balls are far apart: |xσ − xτ | ≥ 2−k, where k ∈ Z is the

unique integer determined by Qσ
∗ = B(xσ, 2

−12−k). Since |xσ − yσ| ≤ 1.00002 · 2−12−k and

|xτ −yτ | ≤ 1.00002 ·2−12−k, the triangle inequality gives |yσ−yτ | ≥ (1−1.00002 ·2−11)2−k.

To continue, write

[c, d] = [cσ, cτ ]︸ ︷︷ ︸
I1

∪ [cτ , dσ]︸ ︷︷ ︸
I2

∪ [dσ, dτ ]︸ ︷︷ ︸
I3

.

Choose tσ ∈ Domain(σ) and tτ ∈ Domain(τ) such that f(tσ) = yσ and f(tτ ) = yτ . There

are three (sub) cases, depending on which of the intervals I1, I2, I3 contain tσ and tτ .

Case 1. Assume that tσ, tτ ∈ I1 ∪ I2 = [cσ, dσ] = Domain(σ). Choose a line L such that

(4.1) holds for σ and let ΠL be any J-projection onto L. Since yσ, yτ ∈ Image(σ), their

projections wσ := ΠL(yσ) and wτ := ΠL(yτ ) satisfy max{|wσ − yσ|, |wτ − yτ |} ≤ 2−49−k by

(4.1) and (4.4). Hence the estimate on |yσ − yτ | from above and the triangle inequality

yields |wσ − wτ | ≥ (1 − 2−10)2−k. Since ΠT (yσ) = x = ΠT (yτ ) and ΠT is 1-Lipschitz, we
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also have |ΠT (wσ)− ΠT (wτ )| ≤ |wσ − yσ|+ |wτ − yτ | ≤ 2−48−k. It follows that

as(L,ΠT ) =
|ΠT (wσ)− ΠT (wτ )|

|wσ − wτ |
≤ 2−48−k

(1− 2−10)2−k
< 0.00000 00000 00004.

This (radically!) contradicts the antislope estimate for L from Lemma 4.15.

Case 2. Assume that tσ, tτ ∈ I2∪ I3 = [cτ , dτ ] = Domain(τ). Repeat the argument from

Case 1 using an approximating line L for τ instead of an approximating line L for σ.

Case 3. Assume that tσ ∈ I1 and tτ ∈ I3. By our supposition above, I2 = [cτ , dσ]

satisfies f(cτ ) ∈ P+
12Qσ

∗
and f(dσ) ∈ P−

12Qσ
∗
. Because x ∈ P1.00002Qσ

∗ and ΠT ◦f is continuous,

the intermediate value theorem produces t′ ∈ (cτ , dσ) ⊂ Domain(σ)∩Domain(τ) such that

ΠT (f(t
′)) = x. Write y′ := f(t′) ∈ Image(σ) ∩ Image(τ). Because |yσ − yτ | > 0.98 · 2−k,

the metric pigeon hole principle implies that |yσ − y′| > 0.49 · 2−k or |yτ − y′| > 0.49 · 2−k,

say without loss of generality that |yσ − y′| > 0.49 · 2−k. As in Case 1, choose any line L

such that (4.1) holds for σ and let ΠL be any J-projection onto L. Since y′ ∈ Image(σ),

its projection w′ := ΠL(y
′) satisfies |w′ − y′| ≤ 2−49−k. Hence

|wσ − w′| ≥ |yσ − y′| − |wσ − yσ| − |w′ − y′| > 0.48 · 2−k.

Since ΠT (yσ) = x = ΠT (y
′), we again find that |ΠT (wσ)−ΠT (w

′)| ≤ |wσ−yσ|+ |w′−y′| ≤
2−48−k. This time it follows that

as(L,ΠT ) =
|ΠT (wσ)− ΠT (w

′)|
|wσ − w′|

<
2−48−k

0.48 · 2−k
< 0.00000 00000 00008.

This (again!) contradicts the antislope estimate for L from Lemma 4.15. □

Remark 4.17. In Lemma 4.16, intersection of Domain(σ) and Domain(τ) in the case

diamQσ = diamQτ , but Qσ ̸= Qτ is possible. For example, consider X = ℓ2∞ = (R2, |·|∞),

LT horizontal, ΠT the vertical projection onto LT , and stack two squares 2λQσ and 2λQτ

whose centers lie on a common vertical line Px with x ∈ LT . Then one can easily draw a

picture where UQσ , UQτ ̸∈ N (T ) and End(σ) = Start(τ) ∈ ∂(2λQσ) ∩ ∂(2λQτ ).

5. Necessary and sufficient cores

Imagine (or see §6) that you want to “pay for” diamT = H1(ΠT (T )) for some efficient

subarc T ⊂ T ′ ∈ Γ∗
UQ

using ℓ(RQ) and {diamHQ′′ : Q′′ ∈ Child(Q)}. The length ℓ(RQ)

pays for H1(ΠT (RQ)), because ΠT is 1-Lipschitz. We will pay for the remaining balance

H1(ΠT (T )\ΠT (RQ)) in installments. Loosely speaking, given a point x ∈ ΠT (T )\ΠT (RQ),

if we can locate a core UQ′ ∈ N1(T )∪N2(T ) whose shadow ΠT (UQ′) contains x, then we can

use Lemma 4.7, 4.10, or 4.12 to pay for H1(ΠT (DQ′)) using {diamHQ′′ : UQ′′ ∩ FQ′ ̸= ∅}.
A worry that we might have is that there exists an exceptional point x ∈ ΠT (T )\ΠT (RQ),

which is not contained in the shadow of a core in N1(T )∪N2(T ). Another concern is that

some core UQ′′ intersecting FQ′ could have diamQ′′ > diamQ′, in which case UQ′′ ̸⊂ EQ′ .

This section ensures that we can effectively ignore these situations.

For the definitions of N1 and N2 cores, see Definition 3.8. For the definitions of the

neighborhoods DQ′ , EQ′ , and FQ′ associated to cores UQ′ , see Definitions 4.4 and 4.9.
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Definition 5.1. Let Q ∈ G and let T ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc. We say that

a core UQ′ ∈ N (T ) = N1(T ) ∪ N2(T ) is locally maximal if Q′′ ∈ Child(Q) \ {Q′} and

UQ′′ ∩ 16Q′
∗ ̸= ∅ implies diamQ′′ < diamQ′.

Remark 5.2. Every core UQ′ ∈ N (T ) with diamQ′ = 2−KM diamQ is locally maximal by

Remark 2.6 and the fact that there do not exist Q′′ ∈ Child(Q) with diamQ′′ > diamQ′.

Lemma 5.3. Let Q ∈ G and let T ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc. If UQ′ ∈ N (T ) is

locally maximal, then Q′′ ∈ Child(Q) and UQ′′ ∩FQ′ ̸= ∅ implies UQ′′ ⊂ EQ′. In particular,

if UQ′ ∈ N1(T )∪N2.2(T ) is locally maximal, then
⋃
MQ′ ⊂ EQ′, where MQ′ is the set of

auxiliary cores defined in Lemma 4.7 / 4.12.

Proof. If UQ′ ∈ N2.1(T ), then FQ′ = EQ′ = UQ′ and the conclusion follows since the cores

{UQ′′ : Q′′ ∈ Child(Q)} are pairwise disjoint. Thus, suppose that UQ′ ∈ N1(T ) ∪ N2.2(T )

is locally maximal, Q′′ ∈ Child(Q), and UQ′′ ∩ FQ′ ̸= ∅. Since FQ′ ⊂ 16Q′
∗ and UQ′ is

locally maximal, either UQ′′ = UQ′ or diamQ′′ < diamQ′. In the former case, we have

UQ′′ = UQ′ ⊂ EQ′ trivially by definition of EQ′ . In the latter case,

diamUQ′′ ≤ 1.00001 diamQ′′
∗ ≤ 21−KM diamQ′

∗ ≤ 2−99 diamQ′
∗.

When UQ′ ∈ N1(T ), it easily follows that UQ′′ intersecting FQ′ = P1.02Q′
∗ ∩ 3.98Q′

∗ implies

UQ′′ ⊂ P1.03Q′
∗ ∩ 3.99Q′

∗ = EQ′ . Similarly, when UQ′ ∈ N2.2(T ), it follows that UQ′′

intersecting FQ′ = 15.98Q′
∗ implies UQ′′ ⊂ 15.99Q′

∗ = EQ′ . □

Lemma 5.4. Let Q ∈ G , let T ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc, and let rT be given by

(3.8). For all UQ′ ∈ N (T ), the neighborhood EQ′ ⊂ B9rT (T ). Moreover, EQ′∩1.99λQ′′ = ∅
for all Q′′ ∈ Child(Q) such that diamQ′ ≤ diamQ′′ and ΠT (16Q

′
∗)∩

(
LT \ΠT (2λQ

′′)
)
̸= ∅.

Proof. Let UQ′ ∈ N (T ). Then T ∩ 1.00002Q′
∗ ̸= ∅; choose any point y in the intersection.

Letting x′ denote the center of Q′, we have |x′ − y| ≤ 1.00002 radiusQ′
∗. Let x ∈ EQ′ ⊂

15.99Q′
∗. Then |x−y| ≤ |x−x′|+ |x′−y| ≤ 16.99002 radiusQ′

∗ ≤ 8.49501 diamQ′
∗ < 9rT .

Hence EQ′ ⊂ B9rT (T ) with room to spare.

Let Q′′ ∈ Child(Q) and suppose that diamQ′ ≤ diamQ′′ and ΠT (16Q
′
∗) intersects the

complement of ΠT (2λQ
′′). Then 16Q′

∗ ∩ (X \ 2λQ′′) ̸= ∅, as well. Note that

gap(X \ 2λQ′′, 1.99λQ′′) ≥ 0.01 radiusQ′′ ≥ 20.48 diamQ′′
∗ ≥ 20.48 diamQ′

∗.

Thus, gap(EQ′ , 1.99λQ′′) ≥ gap(16Q′
∗, 1.99λQ

′′) ≥ gap(X\2λQ′′, 1.99λQ′′)−diam16Q′
∗ ≥

4.48 diamQ′
∗ > 0. Therefore, EQ′ does not intersect 1.99λQ′′. □

Lemma 5.5. Let Q ∈ G and let T ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc. If UQ′ , UQ′′ ∈ N (T ),

diamQ′ < diamQ′′, and ΠT (DQ′) intersects LT \ ΠT (DQ′′), then DQ′ ∩ EQ′′ = ∅. Also,

DQ′ ∩DQ′′′ = ∅ for all UQ′′′ ∈ N (T ) \ {UQ′} such that diamQ′′′ = diamQ′.

Proof. Under the hypotheses of the lemma, diamDQ′ ≤ 16Q′
∗ ≤ 2−96 diamQ′′

∗ and DQ′

intersects X\DQ′′ . Reviewing Definitions 4.4 / 4.9, we further know gap(X\DQ′′ , EQ′′) ≥
0.00001 diamQ′′

∗. Therefore,

gap(DQ′ , EQ′′) ≥ gap(X \DQ′′ , EQ′′)− diamDQ′ ≥ (0.00001− 2−96) diamQ′′
∗ > 0.
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If DQ′′′ ∈ N (T )\{UQ′} and diamQ′′′ = diamQ′, then DQ′ ∩DQ′′′ = ∅ by Remark 2.6. □

Lemma 5.6. Let Q ∈ G and let T ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc. If UQ′ ∈ N (T ) is

not locally maximal, then 16Q′
∗ ⊂ 1.00002Q′′

∗ for some UQ′′ ∈ N (T ) that is locally maximal

or for some UQ′′ ̸∈ N (T ).

Proof. Assume that UQ1 ∈ N (T ) is not locally maximal. Then there exists Q2 ∈ Child(Q)

with diamQ2 > diamQ1 such that UQ2 ∩ 16Q1
∗ ̸= ∅. Let x1 and x2 denote the centers of

Q1 and Q2, respectively, and choose w1 ∈ UQ2 ∩ 16Q1
∗ ⊂ 1.00001Q2

∗ ∩ 16Q1
∗. We have

(5.1) |x1 − x2| ≤ |x1 − w1|+ |w1 − x2| ≤ 16 radiusQ1
∗ + 1.00001 radiusQ2

∗.

Since radiusQ1
∗ ≤ 2−100 radiusQ2

∗, it follows that for all z ∈ 16Q1
∗,

|z − x2| ≤ 32 radiusQ1
∗ + 1.00001 radiusQ2

∗ ≤ (2−95 + 1.00001) radiusQ2
∗.

Hence 16Q1
∗ ⊂ 1.00002Q2

∗. If perchance either UQ2 ∈ N (T ) and UQ2 is locally maximal or

UQ2 ̸∈ N (T ), then we are done. The other possibility is that UQ2 ∈ N (T ) and UQ2 is not

locally maximal and we repeat the argument.

Suppose that for some j ≥ 3 we have found cores UQ1 , · · ·UQj−1 ∈ N (T ), each of which

is not locally maximal, such that

(5.2) diamQi > diamQi−1 and UQi ∩ 16Qi−1
∗ ̸= ∅ for all 2 ≤ i ≤ j − 1,

and such that the centers x1, . . . , xj−1 of the balls Q1, . . . , Qj−1 satisfy

(5.3) |xi−1 − xi| ≤ 16 radiusQi−1
∗ + 1.00001 radiusQi

∗ for all 2 ≤ i ≤ j − 1.

Since Qj−1 is not locally maximal, diamQj−1 ≤ 2−2KM diamQ by Remark 5.2 and there

exists Qj ∈ Child(Q) such that diamQj > diamQj−1 and UQj ∩16Qj−1
∗ ̸= ∅. Let xj denote

the center of Qj and choose wj−1 ∈ UQj ∩ 16Qj−1
∗ ⊂ 1.00001Qj

∗ ∩ 16Qj−1
∗ . Then

(5.4) |xj−1 − xj| ≤ |xj−1 − wj−1|+ |wj−1 − xj| ≤ 16 radiusQj−1
∗ + 1.00001 radiusQj

∗.

Thus, (5.2) and (5.3) also hold when i = j. Let z ∈ 16Q1
∗ and write |z − xj| ≤ |z − x1|+

|x1 − x2|+ · · ·+ |xj−1 − xj|. Since radiusQi−1
∗ ≤ 2−100 radiusQi

∗ for all 2 ≤ i ≤ j, we get

|z − xj| ≤ 16 radiusQ1
∗ + 17.00001

(
j−1∑
i=1

radiusQi
∗

)
+ 1.00001 radiusQj

∗

< (2−93 + 1.00001) radiusQj
∗.

(5.5)

Hence 16Q1
∗ ⊂ 1.00002Qj

∗. Once again, if either UQj ∈ N (T ) and UQj is locally maximal,

or UQj ̸∈ N (T ), then we are done. Otherwise, UQj ∈ N (T ) and UQj is not locally maximal

and we go to the next step of the induction. The iterative scheme eventually terminates

after finitely many steps by Remark 5.2. □

Definition 5.7. Let Q ∈ G and let T ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc. We say that

UQ′ ∈ N (T ) is sufficient if UQ′ is locally maximal or if 16Q′
∗ ⊂ 1.00002Q′′

∗ for some locally

maximal UQ′′ ∈ N (T ). Let S(T ) ⊂ N (T ) denote the set of all sufficient cores.
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Figure 5.1. Proof of Lemma 5.8 (simplified): If no core inN1(T ) orN2(T )

intersects T above x ∈ ΠT (T )\ΠT (RQ), with x far away from the endpoints

of T , then it is impossible to reach f(b) from f(a).

The proof of the following lemma is ultimately a topological argument, which follows

from our assumption that the parameterization f : [0, 1] → Γ is continuous. (Furthermore,

the proof invokes Lemma 4.16, which also exploited the continuity of f .)

Lemma 5.8 (topological lemma). Let Q ∈ G and let T = f([a, b]) ⊂ T ′ ∈ Γ∗
UQ

be an

efficient subarc. Define ρT by (3.8); that is, let ρT be largest diameter of a ball 2λQ′′

among all Q′′ ∈ Child(Q) such that 1.00002Q′′
∗ ∩ T ̸= ∅. For all points x such that

(5.6) x ∈ ΠT (T ) \
(
ΠT (RQ ∩ T ) ∪B0.51ρT ({f(a), f(b)})

)
,

there exists UQ′ ∈ S(T ) such that x ∈ ΠT (UQ′ ∩ T ).

Proof. Let x satisfying (5.6) be given. Following the convention in Remark 3.7, f(a) ∈ P−
{x}

and f(b) ∈ P+
{x}. For simplicity, we shall write Px and P±

x instead of P{x} and P±
{x}.

Consider the set U := {UQ′′ : Q′′ ∈ Child(Q), UQ′′ ∩ T ∩ Px ̸= ∅} of cores that intersect T

and whose shadows contain x. Our assumption that x ∈ ΠT (T ) \ΠT (RQ ∩ T ) guarantees

that U is nonempty and ∅ ≠ T ∩Px ⊂
⋃

UQ′′∈U UQ′′ . Suppose for the sake of contradiction

that no core UQ′′ ∈ U belongs to S(T ). Then, by Lemma 5.6, for all UQ′′ ∈ U , there exists
at least one core UQ′ in

O := {UQ′ ̸∈ N (T ) : Q′ ∈ Child(Q), 1.00002Q′
∗ ∩ T ∩ Px ̸= ∅}

such that UQ′′ ⊂ 16Q′′
∗ ⊂ 1.00002Q′

∗. Hence O ≠ ∅ and

(5.7) T ∩ Px ⊂
⋃

UQ′∈O

1.00002Q′
∗.
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Further, our assumption that x ∈ X \ B0.51ρT ({f(a), f(b)}) ensures that if UQ′ ∈ O, then

2λQ′ ∩ {f(a), f(b)} = ∅. Indeed, given UQ′ ∈ O, let x′ denote the center of Q′ and pick

y′ ∈ 1.00002Q′
∗ ∩ T ∩ Px. Since ΠT is 1-Lipschitz,

|x− ΠT (x
′)| ≤ |y′ − x′| ≤ radius 1.00002Q′

∗ < 2−12 radius 2λQ′ ≤ 2−13ρT .

Using the fact that ΠT is 1-Lipschitz once more and the fact that ΠT fixes f(a) and f(b),

we find that

dist(x′, {f(a), f(b)}) ≥ dist(ΠT (x
′), {f(a), f(b)}) ≥ dist(x, {f(a), f(b)})− |x− ΠT (x

′)|
> (0.51− 2−13)ρT > 0.509ρT ≥ 0.009ρT + radius 2λQ′.

That is, {f(a), f(b)} does not intersect an open tubular neighborhood of 2λQ′ of width

0.009ρT . As a corollary, since f is uniformly continuous, there exists δ > 0 depending on

ρT and the modulus of continuity of f such that

(5.8) Domain(τ) ∩
(
[a, a+ δ) ∪ (b− δ, b]

)
= ∅ for every arc τ ∈ S∗(λQ′).

(Below we only need to know that δ > 0.) To proceed, define collections of arcs and an

associated collection of intervals by

Ay := {τ ∈ S(λQ′) : UQ′ ∈ O, y ∈ Image(τ),Domain(τ) ⊂ [a, b]} ∀y ∈ T ∩ Px,(5.9)

I := {connected components I of
⋃

{Domain(τ) : y ∈ T ∩ Px and τ ∈ Ay}}.(5.10)

By definition, I is pairwise disjoint, and by (5.7) and (5.8), we have T∩Px ⊂
⋃

I∈I f(I) and

I ⊂ [a+δ, b−δ] for all I ∈ I. By Lemma 4.15 and Lemma 4.16, for each interval I = [c, d] ∈
I, either ΠT (f(c)),ΠT (f(d)) < x or ΠT (f(c)),ΠT (f(d)) > x, where we identify [f(a), f(b)]

with an isometric subset of R. Modulo applying continuous reparameterizations to the

domain and image of the continuous map ΠT ◦ f : [a, b] → [f(a), f(b)], we have built a

function g : [0, 1] → [0, 1] such that

(⋆): g is continuous, g(0) = 0, g(1) = 1, and there exists a pairwise disjoint

collection J of non-degenerate closed subintervals of [1/4, 3/4] such that

the preimage g−1(1/2) ⊂
⋃

J and for all intervals J = [c, d] ∈ J , either

g(c), g(d) < 1/2 or g(c), g(d) > 1/2.

(Explicitly, send a 7→ 0, b 7→ 1, a+ δ 7→ 1/4, b− δ 7→ 3/4, f(a) 7→ 0, f(b) 7→ 1, x 7→ 1/2.)

By the next lemma, no such function exists. Therefore, our supposition was false, and

there exists UQ′ ∈ S(T ) such that x ∈ ΠT (UQ′ ∩ T ). □

Lemma 5.9. A function g : [0, 1] → [0, 1] with property (⋆) does not exist.

Proof. Suppose that g exists. Let I denote the connected components of [0, 1] \
⋃

J∈J J .

Label each interval I ∈ I as left-directed or right-directed depending on whether there is

an interval J = [c, d] ∈ J such that I ∩ J ̸= ∅ and g(c), g(d) < 1/2 or g(c), g(d) > 1/2,

respectively. This concept is well-defined by property (⋆), in particular by continuity of

g and by the stated properties of J . The unique half-open interval of the form [0, b) ∈ I
is left-directed, because g(0) = 0; the unique half-open interval of the form (a, 1] ∈ I is
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right-directed, because g(1) = 1. All other intervals in I are open intervals (a, b) with

g(t) < 1/2 for all t ∈ (a, b), if (a, b) is left-directed, and g(t) > 1/2 for all t ∈ (a, b), if

(a, b) is right-directed. The only restriction on values of g(t) for t ∈ [c, d] ∈ J are at the

endpoints t = c and t = d.

Let L := {t ∈ [0, 1] : t ∈ I for some left-directed interval I ∈ I} and let u := supL.

Then g(u) ≤ 1/2, and so, u is not contained in a right-directed interval of I. Let’s

consider the other two possibilities. First, suppose that u ∈ I for some left-directed I ∈ I.
Since every left-directed interval is open to the right (as the interval containing 1 is right-

directed), this would mean that u cannot be an upper bound on L, which is absurd. Next,

suppose that u ∈ J for some J ∈ J . Then J = [u, v] for some u < v and g(u) < 1/2.

(This used the approximation property of the supremum.) Let I ′ = (v, d) ∈ I be the

interval lying immediately to the right of J . The interval I ′ must exist, since the interval

containing 1 belongs to I. Since v > u, I ′ must be right-directed. Hence g(v) > 1/2.

Thus, g(u) > 1/2, because [u, v] ∈ J . This contradicts our observation that g(u) ≤ 1/2.

Therefore, there does not exist a function g : [0, 1] → [0, 1] with property (⋆). □

6. Proof of Lemma I

6.1. Stage 1: improving the coarse estimate.

Lemma 6.1 (initial improvement of (3.6)). With notation as in Lemma I,

diamT − 2ρT ≤ 1.7 ℓ(RQ ∩B9rT (T )) +
∑

UQ′′∈F

diam2λQ′′ + 1.37
∑

UQ′⊂B9rT
(T ), UQ′ ̸∈NF

diamHQ′ .
(6.1)

Proof. Since T is an efficient subarc, ΠT (T ) = [f(a), f(b)]. To start, let

(6.2) J0 = [f(a) + ρT , f(b)− ρT ] \
(
ΠT (RQ ∩ T ) ∪ ΠT (

⋃
F 2λQ′′)

)
.

By subadditivity of measures and the fact that ΠT is 1-Lipschitz,

diamT − 2ρT ≤ H1(ΠT (RQ ∩ T )) +H1(ΠT (
⋃

F 2λQ′′)) +H1(J0)

≤ ℓ(RQ ∩ T ) +
∑
F

diam2λQ′′ +H1(J0).
(6.3)

We shall reach (6.1) from (6.3) by making a sequence of refined estimates onH1(J0). More

precisely, we inductively define measurable2 sets J0 ⊃ J1 ⊃ J2 ⊃ · · · with
⋂∞

i=0 Ji = ∅ and

“pay for” H1(Ji−1 \ Ji) for each i ≥ 1 using a Borel subset Ri of the remainder set RQ

and certain cores Mi in lying in B9rT (T ). In particular, we will prove that

(6.4) H1(Ji−1 \ Ji) ≤ 0.7 ℓ(Ri) + 1.37
∑

UQ′∈Mi

diamHQ′ .

Naturally, we will arrange things so that Ri ∩ Rj = ∅ and Mi ∩ Mj = ∅ for all i ̸= j.

Further, the cores in Mi will not belong to NF , the set of all cores UQ′ with Q′ ∈ Child(Q)

2If X is not separable, pass to a separable subspace of X containing the rectifiable curve Γ before

defining J0 to ensure the projection ΠT (RQ) is universally measurable.
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such that UQ′ ⊂ 1.99λQ′′ for some UQ′′ ∈ F . Thus, (6.1) follows immediately by combining

(6.3) and (6.4).

Let S(T ) be given as in Definition 5.7. For each i ≥ 1, inductively define

Si := {UQ′ ∈ S(T ) : diamQ′ = 2−KMi diamQ, ΠT (UQ′) ∩ Ji−1 ̸= ∅},(6.5)

Ji := Ji−1 \
⋃

UQ′∈Si

ΠT (DQ′).(6.6)

By Lemma 5.8, every x ∈ J0 lies in the shadow ΠT (UQ′) of some core UQ′ ∈ S(T ). Hence⋂∞
i=0 Ji = ∅. Every core UQ′ ∈ Si (i ≥ 1) is locally maximal (see Definitions 5.1 and 5.7),

because ΠT (UQ′) ∩ Ji−1 ̸= ∅ implies that 16Q′
∗ ̸⊂ 1.00002Q′′

∗ for any locally maximal core

UQ′′ ∈ N (T ) with diamQ′′ > diamQ′. Indeed, the shadows ΠT (DQ′′) ⊃ ΠT (1.00002Q
′′
∗)

of all locally maximal UQ′′ ∈ N (T ) with diamQ′′ > diamQ′ (which belong to S(T )) were
already deleted from J0, . . . , Ji−2 in the inductive definition Ji−1.

Our next task is to bound the length of each set Ji−1 \ Ji. Fix i ≥ 1. If Ji = Ji−1,

then H1(Ji−1 \ Ji) = 0. If Ji ̸= Ji−1, then by countable subadditivity of measures, the

isodiametric inequalityH1(A) ≤ diamA for all A ⊂ R, and the fact that ΠT is 1-Lipschitz,

(6.7) H1(Ji−1 \ Ji) ≤
∑

UQ′∈Si

diamΠT (DQ′).

For each UQ′ ∈ Si, define an auxiliary family of cores MQ′ and Borel set R̂Q′ as follows:

• if UQ′ ∈ N1(T ), define MQ′ to be the family in Lemma 4.7 and R̂Q′ := RQ ∩ FQ′ ;

• if UQ′ ∈ N2.1(T ), define MQ′ := {UQ′} and R̂Q′ := ∅ (cf. Lemma 4.10); and,

• if UQ′ ∈ N2.2(T ), define MQ′ to be the family in Lemma 4.12 and R̂Q′ := RQ∩FQ′ .

By Lemma 5.3, the set MQ′ := R̂Q′ ∪
⋃
MQ′ ⊂ EQ′ for all UQ′ ∈ Si. Furthermore, the set

MQ′ ⊂ B9rT (T ) and MQ′ ∩NF = ∅ by Lemma 5.4 and property (F). Define

(6.8) Mi :=
⋃

UQ′∈Si

MQ′ and Ri :=
⋃

UQ′∈Si

R̂Q′ .

Then (6.4) follows immediately from (6.7), the estimates Lemma 4.7, Lemma 4.10, and

Lemma 4.12, and the second part of Lemma 5.5.

Finally, as required, Mi ∩ Mj = ∅ and Ri ∩ Rj = ∅ for all i ̸= j by the first part of

Lemma 5.5. □

6.2. Stage 2: iterating the improved estimate.

Lemma 6.2. Let Q ∈ G and let T ⊂ T ′ ∈ Γ∗
UQ

be an efficient subarc. If UQ′ ∈ N2.2(T ) is

locally maximal, then there is a set MQ′ of cores UQ′′ with Q′′ ∈ Child(Q) and UQ′′ ⊂ EQ′

such that

(6.9) diamDQ′ < 1.2 ℓ(RQ ∩ EQ′) + 0.95
∑

UQ′′∈MQ′

diamHQ′′ .
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Proof. Let Y be given by Lemma 4.11. We repeat the proof of Lemma 4.12, but use

the improved estimate (6.1) with F = ∅ instead of the coarse estimate. In effect, we are

incorporating the existence of cores UQ′′ that lie nearby, but do not necessarily intersect the

subarcs Y ∈ Y . By Lemma 4.11 and assumption UQ′ is locally maximal, for every subarc

Y ∈ Y , we know that Y ⊂ FQ′ \ Q′
∗, diamY ≥ 0.00021 diamQ′

∗, rY ≤ 2−KM diamQ′
∗ ≤

2−100 diamQ′
∗, ρY ≤ 2λAH · 212rY ≤ 2−84 diamQ′

∗, and 0.99999 diamY ≤ diamY − 2ρY .

In addition, {1.00002Q′
∗} ∪ {B9rY (Y ) : Y ∈ Y} is pairwise disjoint. Since FQ′ = 15.98Q′

∗,

we easily obtain B9rY (Y ) ⊂ 15.981Q′
∗ ⊂ 15.99Q′

∗ = EQ′ from the estimate on rY .

Let MQ′ = {UQ′′ : Q′′ ∈ Child(Q) and UQ′′ ⊂ EQ′}. Now, diamQ′
∗ ≤ 2.00002 diamHQ′ ,

which implies 0.68499 diamQ′
∗ ≤ 1.37 diamHQ′ . Further, for every Y ∈ Y ,

0.99999 diamY ≤ diamY − 2ρY ≤ 1.7 ℓ(RQ ∩B9rY (Y )) + 1.37
∑

UQ′′⊂B9rY (Y )

diamHQ′′

by (6.1) with F = ∅. Also, by Lemma 4.11,
∑

Y ∈Y 0.99999 diamY ≥ 22.45977 diamQ′
∗.

Finally, B9rY (Y ) ⊂ EQ′ . Combining these estimates, we obtain

(0.68499 + 22.45977) diamQ′
∗ ≤ 1.7 ℓ(RQ ∩ EQ′) + 1.37

∑
UQ′′∈MQ′

diamHQ′′ .

Since diamDQ′ = 16 diamQ′
∗, this estimate yields (6.9). □

Proof of Lemma I. Repeat the proof of Lemma 6.1, except use Lemma 6.2 in place of

Lemma 4.12. Instead of (6.4), the proof gives

(6.10) H1(Ji−1 \ Ji) ≤ 1.2 ℓ(Ri) + 1.00016
∑

UQ′∈Mi∩N2.1(T )

diamHQ′′ + 0.95
∑

UQ′∈Mi\N2.1(T )

diamHQ′ .

Therefore, instead of (6.1), we ultimately obtain

diamT − 2ρT ≤ 2.2 ℓ(RQ ∩B9rT (T )) +
∑

UQ′′∈F

diam2λQ′′

+ 1.00016
∑

UQ′∈N2.1(T )\NF

diamHQ′ + 0.95
∑

UQ′ ̸∈N2.1(T )∪NF

diamHQ′ .
(6.11)

where the sums in the second line may be further restricted to UQ′ contained in B9rT (T ).

Replacing the terms 0.95
∑

UQ′∈N2.2(T )\NF
diamHQ′ with 1.00016

∑
UQ′∈N2.2(T )\NF

diamHQ′

yields (3.9). (The purpose of this last step is to let us avoid defining N2.1(T ) in §3.) □

Remark 6.3. One could continue to iterate estimates for N2.2(T ) cores to further reduce

the coefficient 0.95. However, iteration will never let us improve the coefficient 1.00016

associated to N2.1(T ) cores.

7. Proof of Lemma II

Assume for the duration of this section that Q ∈ G has small remainder in the sense

of Definition 3.3 and few non-N2(GQ) cores in the sense of (3.11).
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7.1. Existence of A and proof of (3.12). Because GQ = f([aQ, bQ]) satisfies (3.7), Q

has small remainder, and (3.11) holds,

H1
(
ΠGQ

(
⋃

N2(GQ))
)
≥ diamGQ − ℓ(RQ)−

∑
UQ′ ̸∈N2(GQ)

diamUQ′

≥ (0.99993− 0.01− 0.05) diamHQ = 0.93993 diamHQ.

(7.1)

(To start, write diamGQ = H1(ΠGQ
(GQ)). Compare to the derivation of (6.1).)

We will construct A inductively using a greedy algorithm. To begin, we stratifyN2(GQ)

by size. For each i ≥ 1, let Ui denote the set of all cores UQ′ ∈ N2(GQ) such that

diamQ′ = 2−KMi diamQ. Each family Ui consists of finitely many cores, because Γ is

compact. Some (but not all) of the families may be empty.

Choose A1 to be a maximal subset of U1 such that {2λQ′′ : UQ′′ ∈ A1} is pairwise

disjoint. Note that A1 automatically enjoys property (F) with T = GQ, because there are

no Q′ ∈ Child(Q) with diamQ′ > diamQ′′. If
∑

UQ′′∈A1
diam2λQ′′ ≥ 0.04 diamHQ, then

we halt and define A := A1. Otherwise, we move to the induction step.

Suppose that we have defined A1 ⊂ · · · ⊂ Ai−1 for some i ≥ 2 so that Ai−1 satisfies

property (F) with T = GQ and
∑

UQ′′∈Ai−1
diam2λQ′′ < 0.04 diamHQ. Choose a maximal

family A′
i from the collection

{UQ′′ ∈ Ui : 2λQ′′ ∩ 2λQ′ = ∅ for all UQ′ ∈ Ai−1, and

2λQ′′ ̸⊂ 16.1Q′
∗ when UQ′ ∈ Child(Q) and diamQ′ > diamQ′′}

(7.2)

such that {2λQ′′ : UQ′′ ∈ A′
i} is pairwise disjoint. If it happened that 2λQ′′ ∩ 16Q′

∗ ̸= ∅
for some UQ′′ ∈ A′

i and UQ′ ∈ Child(Q) with diamQ′ > diamQ′′, then we would also have

2λQ′′ ⊂ 16.1Q′
∗ by (2.7), which is impossible. Thus, the next family Ai := Ai−1 ∪A′

i also

satisfies property (F) with T = GQ. If
∑

UQ′′∈Ai
diam2λQ′′ ≥ 0.04 diamHQ, then we halt

and define A := Ai. Otherwise, carry out the next step of the induction.

We claim that the process described above always halts, i.e. there is an integer n ≥ 1

such that A = An has property (F) and
∑

UQ′′∈A diam2λQ′′ ≥ 0.04 diamHQ. Suppose

for contradiction that the process does not halt. We will construct an overly efficient

cover of ΠGQ
(
⋃

UQ′′∈N2(GQ) UQ′′). Suppose that UQ′′ ∈ Uj \ Aj for some j ≥ 1. Then, by

maximality of the family A′
j, at least one of the following occurs:

(i) 2λQ′′ ∩ 2λQ′ ̸= ∅ for some Q′ ∈ Aj with diamQ′ ≥ diamQ′′;

(ii) 2λQ′′ ⊂ 16.1Q′
∗ for some UQ′ ∈ Child(Q) with diamQ′ > diamQ′′.

In situtation (i), 2λQ′′ ⊂ 6λQ′ for some UQ′ ∈ Aj. In the event that (ii) holds, there are

two alternatives:

(iii) 2λQ′′ ⊂ 16.1Q′
∗ for some UQ′ ̸∈ N2(GQ);

(iv) 2λQ′′ ⊂ 16.1Q′
∗ ⊂ 2λQ′ for some UQ′ ∈ N2(GQ) with diamQ′ > diamQ′′, and

hence UQ′ ∈ Ui for some i < j.
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It follows that for each j ≥ 1,

(7.3)
⋃

UQ′′∈Uj

2λQ′′ ⊂
⋃

UQ′∈Aj

6λQ′ ∪
⋃

UQ′ ̸∈N2(GQ)

16.1Q′
∗ ∪

j−1⋃
i=1

⋃
UQ′∈Ui

2λQ′.

After recursively applying (7.3) and then letting j → ∞, we obtain⋃
UQ′′∈N2(GQ)

UQ′′ ⊂
⋃

UQ′′∈N2(GQ)

2λQ′′ ⊂
∞⋃
i=1

⋃
UQ′∈Ai

6λQ′ ∪
⋃

UQ′ ̸∈N2(GQ)

16.1Q′
∗.

In particular, by countable subadditivity of measures and by the now familiar fact that

H1(ΠGQ
(A)) ≤ diamΠGQ

(A) ≤ diamA for all Borel sets A ⊂ X,

H1
(
ΠGQ

(
⋃

N2(GQ))
)
≤ 3

∑
UQ′′∈A1∪A2∪···

diam2λQ′′ + 16.1
∑

UQ′ ̸∈N2(GQ)

diamUQ′

< (3 · 0.04 + 16.1 · 0.05) diamHQ = 0.925 diamHQ.

This contradicts (7.1). Therefore, the process above halts and A = An for some n ≥ 1.

We remark that A is finite, because A ⊂
⋃n

i=1 Ui and each Ui is finite. This proves (3.12).

7.2. Proof of (3.13). The proof of (3.13) leans on techniques developed in §4. To begin,

we describe the large-scale geometry of ∗-almost flat arcs in balls around A cores. Recall

that every A core belongs to N2(GQ). The first lemma below (Lemma 7.1) is a variant

of Lemma 4.11 in the large-scale window 2λQ′′ instead of the small-scale window 16Q′′
∗.

The second lemma (Lemma 7.2) modifies the arcs obtained in Lemma 7.1 to avoid cores

UQ′ ⊂ 2λQ′′ such that diamQ′ = diamQ′′. This is necessary to get good control on ρX
for the subarcs X that we apply Lemma I to in the third lemma below (Lemma 7.3).

Lemma 7.1. If UQ′′ ∈ A, then there exists a finite set Y subarcs of arc fragments in

Γ∗
1.98λQ′′ such that the neighborhoods {B2−M−35 diamQ′′

∗
(Y ) : Y ∈ Y} are pairwise disjoint,

diamY ≥ 0.00199 diam2λQ′′ for all Y ∈ Y, and in total
∑

Y ∈Y diamY ≥ 1.23 diam2λQ′′.

(The cardinality of Y is 2 or 3.)

Proof. Let τ = f |[a,b] ∈ S(λQ′′) be a wide arc for UQ′′ . By our convention in Remark 3.7,

f(a) lies to the left of f(b). Let T1 = τ([c, d]) be a subarc of Image(τ) ∩ 1.98λQ′′, where

c := sup{t ∈ [a, b] : τ(t) ∈ P−
UQ′′ ∩ ∂(1.98λQ′′)} and

d := inf{t ∈ [a, b] : τ(t) ∈ P+
UQ′′ ∩ ∂(1.98λQ′′)}

By (4.1) and (1.2), there exists a line L such that dist(p, L) ≤ 2−53 diam1.98λQ′′ for

all p ∈ Image(τ). Since Image(τ) ∩ 1.00002Q′′
∗ ̸= ∅, repeating the proof of Lemma 4.3

mutatis mutandis informs us that T1 (easily) intersects 1.1Q′′
∗ ⊂ 2−11(1.98λQ′′). Further,

by mimicking the proof of Lemma 4.10, we find that

diamT1 ≥ (1− 2−10 − 2−52) diam1.98λQ′′ ≥ 0.98903 diam2λQ′′.
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Choose a line Lτ such that (4.3) holds for τ , choose a J-projection Πτ onto Lτ , and

identify Lτ with R. By (4.4), |Πτ (w) − w| ≤ 2−M−47 diam2λQ′′ for all w ∈ Image(τ).

Thus, the interval [s1, s2] := Πτ (T1) is large in the sense that

s2 − s1 ≥ diamT1 − 2−M−46 diam2λQ′′ ≥ 0.98902 diam2λQ′′.

Since βS∗(λQ′′)(2λQ
′′) ≥ 2−M , but the excess of Image(τ) over Lτ is comparatively small,

we can locate an arc ξ ∈ S∗(λQ′′) and point x ∈ Image(ξ) such that dist(x, Lτ ) ≥
2−M diam2λQ′′. Let T2 be a subarc of Image(ξ)∩1.98λQ′′ with one endpoint in ∂(1.98λQ′′)

and one endpoint in ∂(λQ′′). We can do this, because the image of every arc in Λ(λQ′′)

intersects λQ′′ and Q′′ ̸∈ Bλ
0 . Then

diamT2 ≥ 0.98 radiusλQ′′ = 0.245 diam2λQ′′(7.4)

and diamT1+diamT2 ≥ 1.23403 diam2λQ′′. If B2−M−35 diamQ′′
∗
(T1)∩B2−M−35 diamQ′′

∗
(T2) =

∅, then we may take Y = {T1, T2}.
Suppose otherwise that B2−M−35 diamQ′′

∗
(T1) ∩ B2−M−35 diamQ′′

∗
(T2) ̸= ∅. For ease of nota-

tion, we switch from scale diamQ′′
∗ to scale diam2λQ′′, recalling that 2−M−35 diamQ′′

∗ ≤
2−M−48 diam2λQ′′. Let Lξ be a line such that (4.3) holds for ξ and let Πξ be a J-projection

onto Lξ. Then

B2−M−48 diam2λQ′′(T1) ⊂ B(2−M−48+2−M−54) diam2λQ′′(Lτ ) ⊂ B2−M−47 diam2λQ′′(Lτ ),

B2−M−48 diam2λQ′′(T2) ⊂ B(2−M−48+2−M−48) diam2λQ′′(Lξ) ⊂ B2−M−47 diam2λQ′′(Lξ),

and Lτ intersects B2 := B2−M−45 diam2λQ′′(Lξ) by the triangle inequality. Continuing to

identify Lτ with R, define

t1 := min{z : z ∈ Lτ ∩B2} and t2 := max{z : z ∈ Lτ ∩B2}.

As in the proof of Lemma 4.11, there are two cases.

For the easier case, suppose that t2 ≤ s1+0.002 diam2λQ′′ or t1 ≥ s2−0.002 diam2λQ′′.

Choose a subarc T̃1 of T1 with Πτ (T̃1) = [s1+0.002 diam2λQ′′, s2−0.002 diam2λQ′′]. Then

by (4.1) and (4.4) T̃1 satisfies

T̃1 ⊂ B2−M−53 diam2λQ′′([s1 + 0.002 diam2λQ′′, s2 − 0.002 diam2λQ′′]),

and, by the triangle inequality, diam T̃1 ≥ s2 − s1 − (0.004 + 2−M−52) diam2λQ′′ ≥
0.98501 diam2λQ′′. To verify disjointness, we use the triangle inequality again to cal-

culate

gap(B2−M−47 diam2λQ′′(Lτ ), B2−M−47 diam2λQ′′(Lξ)) ≥ (2−M−45 − 2−M−46) diam2λQ′′.

Recalling (7.4) we see diam T̃1 + diamT2 ≥ 1.23 diam2λQ′′. Therefore, in this case we

may take Y = {T̃1, T2}.
For the harder case, suppose that

(7.5) t2 > s1 + 0.002 diam2λQ′′ and t1 < s2 − 0.002 diam2λQ′′.
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Our immediate goal is to show that t2 − t1 is relatively small. Let y, z ∈ Lτ be such that

y = t1 and z = t2 by our identification of Lτ with R. Since y, z ∈ Lτ ∩ B2, the points

yξ, zξ := Πξ(y) satisfy

max{|y − yξ|, |z − zξ|} ≤ 2−M−45 diam2λQ′′.

Now, define the line L̃ξ := Lξ + (y− yξ) parallel to Lξ which intersects y. Let Πξ̃(v) :=

Πξ(v) + (y− yξ) and note that Πξ̃ is a J-projection onto L̃ξ. Recall that x ∈ Image ξ, and

define xξ̃ := Πξ̃(x), xξ̃τ := Πτ (xξ̃), zξ̃ := Πξ̃(z), and zξ̃τ := Πτ (zξ̃). Then, we have:

|zξ̃ − y| ≥ |z − y| − |zξ̃ − zξ| − |zξ − z| ≥ t2 − t1 − 2−M−44 diam2λQ′′,(7.6)

|zξ̃ − zξ̃τ | ≤ 2 dist(zξ̃, Lτ ) ≤ 2|z − zξ̃| ≤ 2|z − zξ|+ 2|y − yξ| ≤ 2−M−43 diam2λQ′′,(7.7)

|xξ̃ − y| ≤ |x− y|+ |xξ̃ − x| ≤ (1 + 2−M−44) diam2λQ′′, and(7.8)

|xξ̃ − xξ̃τ | ≥ |x− xξ̃τ | − |x− xξ̃| ≥ 2−M−1 diam2λQ′′.(7.9)

By “similar triangles”, it follows that

t2 − t1 − 2−M−44 diam2λQ′′ ≤ |zξ̃ − y| = |xξ̃ − y|
|zξ̃ − zξ̃τ |
|xξ̃ − xξ̃τ |

< (2 diam2λQ′′)
2−M−43

2−M−1
.

Rearranging, we see that t2−t1 < (2−M−44+2−41) diam2λQ′′ < 2−40 diam2λQ′′. Together

with (7.5), it follows that we may choose t̃1 and t̃2 such that

t̃1 < t1 < t2 < t̃2

and t̃2 − t̃1 ≤ 2−39 diam2λQ′′. Let T̃1.1 and T̃1.2 be a subarcs of T1 with Πτ (T̃1.1) = [s1, t̃1]

and Πτ (T̃1.2) = [t̃2, s2].

To see that B2−M−48 diam2λQ′′(T1.1) and B2−M−48 diam2λQ′′(T1.2) are disjoint, we calculate

gap(B2−M−47 diam2λQ′′([s1, t̃1]), B2−M−47 diam2λQ′′([t̃2, s2]))

≥ (2−39 − 2−M−46) diam2λQ′′ > 0.

Similarly, to see that B2−M−48 diam2λQ′′(T̃1.1 ∪ T̃1.2) and B2−M−48 diam2λQ′′(T2) are disjoint,

we estimate

gap(B2−M−48 diam2λQ′′(T̃1.1 ∪ T̃1.2), B2−M−48 diam2λQ′′(T2))

≥ gap(B2−M−47 diam2λQ′′(Lξ), B2−M−47 diam2λQ′′([s1, t̃1] ∪ [t̃2, s2]))

≥ (2−M−45 − 2−M−46) diam2λQ′′ > 0.

We not turn to estimating the diameters of these subarcs. By (4.3) and (4.4)

T̃1.1 ⊂ B2−M−53 diam2λQ′′([s1, t̃1]), diam T̃1.1 ≥ t̃1 − s1 − 2−M−52 diam2λQ′′,(7.10)

T̃1.2 ⊂ B2−M−53 diam2λQ′′([t̃2, s2]), diam T̃1.2 ≥ s2 − t̃2 − 2−M−52 diam2λQ′′.(7.11)

Recalling (7.5), min{diam T̃1.1, diam T̃1.2} ≥ 0.00199 diam2λQ′′. Moreover, by (7.4) and

the fact that 2−39 ≪ 0.00001

diam T̃1.1 + diam T̃1.2 + diamT2
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Figure 7.1. Separated subarcs X associated to a ball 2λQ′′ with UQ′′ ∈ A.

When βS∗(λQ)(2λQ) is sufficiently small, cores UQ′ with diamQ′
∗ = diamQ′′

∗
may intersect both of the underlying arcs τ and ξ used to build Y .

≥ s2 − s1 − 0.00001 diam2λQ′′ − 2−M−51 diam2λQ′′ + diamT2

≥ 1.234 diam2λQ′′.

In this case, we may take Y = {T̃1.1, T̃1.2, T2}. □

Lemma 7.2. If UQ′′ ∈ A, then there exists a finite set X of efficient subarcs of arc

fragments in Γ∗
1.98λQ′′ such that the set

{1.00002Q′
∗ :Q

′ ∈ Child(Q), diamQ′ = diamQ′′}
∪ {B2−M−35 diamQ′′

∗
(X) : X ∈ X} is pairwise disjoint,

diamX ≥ 0.25 diamQ′′
∗ for all X ∈ X , and

∑
X∈X diamX ≥ 1.11 diam2λQ′′.

Proof. Let UQ′′ ∈ A, say Q′′ = B(x′′, AH 2−k), and let Y be given by the previous lemma.

Because {B2−M−35 diamQ′′
∗
(Y ) : Y ∈ Y} is pairwise disjoint, it suffices to construct a family

XY of efficient subarcs X of Y for each Y ∈ Y such that

{1.00002Q′
∗ : Q

′ ∈ Child(Q), diamQ′ = diamQ′′} ∪ {B2−M−35 diamQ′′
∗
(X) : X ∈ XY }

is pairwise disjoint, diamX ≥ diamQ′′
∗ for all X ∈ XY , and in total

∑
X∈XY

diamX ≥
0.904 diamY . Then X =

⋃
Y ∈Y XY satisfies the required properties. In particular,∑

X∈X

diamX ≥ 0.904
∑
Y ∈Y

diamY ≥ 1.111 diam2λQ′′,

since
∑

Y ∈Y diamY ≥ 1.23 diam2λQ′′.

Fix Y = f([a, b]) ∈ Y and let τ ∈ S∗(λQ) be an arc, for which Y is a subarc of Image(τ)∩
1.98λQ′′. Note that diamY ≥ 0.00199 diam2λQ′′ > 2−9 diam2λQ′′ ≥ 24 diamQ′′

∗. Let L

be a line such that (4.3) holds for τ and let ΠL be a J-projection onto L. By (4.4), we

have |ΠL(x)−x| ≤ 2−M−47A−1
H diam2λQ′′ ≤ 2−M−38 diamY for all x ∈ Image(τ). Since Y
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is compact and connected, I0 := ΠL(Y ) = [c, d]. Considering any pair of points u, v ∈ Y

such that |u− v| = diamY , we see that

diam I0 ≥ |ΠL(u)− ΠL(v)| ≥ |u− v| − |ΠL(u)− u| − |ΠL(v)− v| ≥ (1− 2−M−37) diamY.

Hence diam I0 > 0.99999 diamY > 15.999 diamQ′′
∗. Form the minimal partition P of I0

into closed intervals with disjoint interiors that includes the set of intervals

J := {I0 ∩ ΠL(1.00004Q
′
∗) :Q

′ ∈ Child(Q), diamQ′ = diamQ′′,

1.00002Q′
∗ ∩B2−M−35 diamQ′′

∗
(Y ) ̸= ∅}.

If J = ∅, then we may simply take XY = {Ỹ }, where Ỹ is any efficient subarc of Y with

diam Ỹ = diamY . Thus, suppose that J is nonempty. Because every ball in X contains

a diameter parallel to L, for each J = I0 ∩ ΠL(1.00004Q
′
∗) ∈ J ,

diam J ≤ diamΠL(1.00004Q
′
∗) = 1.00004 diamQ′

∗ = 1.00004 · 2−k−11

with equality unless J ∩ {c, d} ≠ ∅. The intervals in J are uniformly separated. Indeed,

for each J = I0 ∩ 1.00004Q′
∗, let xJ denote the center of Q′

∗, let yJ ∈ B2−M−35 diamQ′′
∗
(Y )∩

1.00002Q′
∗, and let zJ = ΠL(yj) ∈ J ; then diam J < 2−k−10 and

|xJ − zJ | ≤ |xJ − yJ |+ |yJ − zJ |
≤ 1.00002 · 2−k−12 + 2−k−12−M−35 + 2−M−47A−1

H · 4λAH 2−k < 2−k−10.

Because {xJ : J ∈ J } is 2−k-separated, it follows that for all distinct J1, J2 ∈ J ,

gap(J1, J2) ≥ 2−k − |xJ1 − zJ1| − diam J1 − |xJ2 − zJ2| − diam J2

≥ (1− 2−8)2−k = (1− 2−8)211 · 2−k−11 ≥ 210 diamQ′′
∗.

For each interval I ∈ P \ J , choose an efficient subarc XI of Y such that ΠL(XI) ⊂ I

and diamXI ≥ diam I. If I ∈ P \ J and I ∩ {c, d} ̸= ∅, then I lies between two distinct

intervals J1, J2 ∈ J and diamXI ≥ diam I ≥ gap(J1, J2) ≥ 210 diamQ′′
∗. At most two

exceptional I ∈ P \ I contain one of the endpoints of I0; the diameter of an exceptional

interval I may be relatively large or small. We assign

XY := {XI : I ∈ P \ J and diam I ≥ 0.25 diamQ′′
∗},

which contains all of the subarcs XI that we defined with at most two exceptions. (We

exclude XI from XY if exceptionally I∩{c, d} ≠ ∅ and diam I < 0.25 diamQ′′
∗.) By design,

the 2−M−35 diamQ′′
∗-neighborhoods of the subarcs in XY do not intersect

⋃
{1.00002Q′

∗ :

Q′ ∈ Child(Q), diamQ′ = diamQ′′}. Furthermore, any pair of distinct XI1 , XI2 ∈ XY

enjoy

gap(XI1 , XI2) ≥ gap(ΠL(XI1),ΠL(XI2)) ≥ 1.00004 diamQ′′
∗,

because I1 and I2 are separated by an interval in J ∈ J that does not intersect {c, d}.
It remains to estimate the total diameter in XY in terms of diamY . Let us agree to

call an interval I ∈ P \I short, medium, or long if diam I < 0.25 diamQ′′
∗, 0.25 diamQ′′

∗ ≤
diam I < 210 diamQ′′

∗, or diam I ≥ 210 diamQ′′
∗, respectively. Above, we showed that

any interval I ∈ P \ J lying between two intervals in J is long. Hence any short
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or medium interval must contain one of the endpoints of I0. Also, if I is short, then

diam I < 0.25 diamQ′′
∗ < 0.016 diam I0, because diam I0 > 15.999 diamQ′′

∗ (look above).

After deleting any short intervals from the ends of I0, the remaining interval

I00 := I0 \
⋃

{I ∈ P \ J : XI ̸∈ XY }

has diam I00 ≥ 0.968 diam I0 ≥ 0.96799 diamY > 15.486 diamQ′′
∗. Now, if J ∈ J , then

diam J ≤ 1.00004 diamQ′′
∗ < 0.065 diam I00. If J ∈ J and I is long, then diam J ≤

1.00004 diamQ′′
∗ < 0.001 diam I. Since there the number of intervals in J is at most one

more than the number of long intervals, it follows that∑
XI∈XY

diamXI >
1− 0.065

1.001
diam I00 > 0.90416 diamY. □

Lemma 7.3. If UQ′′ ∈ A, then there exists a family LQ′′ of cores UQ′ ⊂ 1.99λQ′′ with

Q′ ∈ Child(Q) such that

(7.12) diam2λQ′′ ≤ 2ℓ(RQ ∩ 1.99λQ′′) + 0.91
∑

UQ′∈LQ′′

diamHQ′ .

Proof. Fix UQ′′ ∈ A and let X be the family of efficient subarcs of arc fragments in Γ∗
1.98λQ′′

given by Lemma 7.2. With the intention to invoke Lemma I, we define

LQ′′ := {UQ′ : Q′ ∈ Child(Q) and UQ′ ∩B9 diamQ′′
∗ (1.98λQ

′′) ̸= ∅}.

Property (F) with F = A and T = GQ tells us diamQ′ ≤ diamQ′′ for all Q′ ∈ Child(Q)

such that 16Q′
∗ ∩ 2λQ′′ ̸= ∅. This more than ensures UQ′ ⊂ 1.99λQ′′ for every UQ′ ∈ LQ′′ .

Let X ∈ X . By Lemma 7.2, diamX ≥ 0.25 diamQ′′
∗ and

ρX ≤ 2−KM · 2λAH · 212 diamQ′′
∗ ≤ 2−M−84 diamQ′′

∗,(7.13)

since X ∩ 1.00002Q′
∗ = ∅ whenever Q′ ∈ Child(Q) and diamQ′ = diamQ′′. It follows that

diamX − 2ρX ≥ 0.99999 diamX. By Lemma I, with T = X and F = ∅, we obtain

(7.14) 0.99999 diamX ≤ 2.2 ℓ(RQ ∩B9rX (X)) + 1.00016
∑

UQ′⊂B9rX
(X)

diamHQ′ .

Finally, by Lemma 7.2, the arcs in X are well-separated from each other compared with

(7.13) and have total diameter
∑

X∈X diamX ≥ 1.11 diam2λQ′′. Thus, summing (7.14)

over all X ∈ X and rearranging, we obtain (7.12). □

Because {2λQ′′ : UQ′′ ∈ A} is pairwise disjoint, (3.13) follows by applying (7.12) to

each core UQ′′ ∈ A. This concludes the proof of Lemma II.

This completes our demonstration of the Main Theorem. In any Banach space, a curve

of length 1 rarely looks under a magnifying glass like a union of two or more line segments.
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Appendix A. Unions of overlapping balls in a metric space

Lemma A.1 bounds the radius of a ball containing the union of chains of balls with

geometric decay and good separation between balls of similar radii. Although it can be

lowered slightly by increasing the parameter ξ, the factor 3 in the lower bound on the gap

between balls in level k cannot be made arbitrarily small.

Lemma A.1 (cf. [Sch07a, Lemma 2.16]). Let X be a metric space, let ξ > 6, and let

r0 > 0. Suppose {B(xi, ri)}Ii=1 is a finite (I < ∞) or infinite (I = ∞) sequence of closed

balls in X and (ki)
I
i=1 is a sequence of integers bounded from below such that

(i) chain property: for all j ≥ 2, each pair (B1, B2) of balls in the initial segment

{B(xi, ri) : 1 ≤ i ≤ j} can be connected by a chain of balls from the collection,

i.e. there exists a finite sequence such that the first ball is B1, the last ball is B2,

and consecutive balls in the sequence have nonempty intersection;

(ii) geometric decay: for all i ≥ 1, we have ri ≤ ξ−kir0; and

(iii) separation within levels: for all i, j ≥ 1 with i ̸= j, if ki = kj = k, then

gap(B(xi, ri), B(xj, rj)) ≥ 3ξ−kr0, where gap(S, T ) = inf{dist(s, t) : s ∈ S, t ∈ T}.
Then there exists a unique M ≥ 1 such that kM = mini≥1 ki, and moreover,

(A.1)
⋃I

i=1B(xi, ri) ⊂ B
(
xM , (1 + 3/ξ)ξ−kM r0

)
.

Proof. Let parameters ξ and r0, a sequence {B(xi, ri)}Ii=1, and a sequence (ki)
I
i=1 be given

with the stated assumptions. Without loss of generality, we may assume that r0 = 1.

Because {ki : i ≥ 1} is a set of integers bounded from below, we may choose and fix

M ≥ 1 such that kM = mini≥1 ki. (We prove M is unique later.) Our main task is to

prove that for all integers 1 ≤ n ≤ I,

(A.2)
⋃n

i=1 B(xi, ri) ⊂ B
(
xm, (1 + 2ξ−1 + 4ξ−2 + 8ξ−3 + · · · )ξ−km

)
,

where 1 ≤ m ≤ n is an index such that km = minn
i=1 ki and m = M whenever n ≥ M .

When n = 1, there is only one ball and (A.2) is trivial by (ii). Note that the series in

(A.2) converges, because ξ > 2. We proceed by strong induction. Let 1 ≤ N < I and

suppose that up to relabeling (A.2) holds for any chain-connected cluster of N or fewer

balls satisfying (ii) and (iii). Set n = N + 1 and choose any index 1 ≤ m ≤ N + 1 such

that km = minN+1
i=1 ki, if N + 1 < M , and set m = M , if N + 1 ≥ M . Sort the collection

{B(xi, ri) : 1 ≤ i ≤ N+1}\{B(xm, rm)} into a finite number of maximal chain-connected

components U1, . . . ,Ul and note that each Ui contains at most N balls. See Figure A.1.

Fix a cluster U = Ui. By the inductive hypothesis, there exists B(xj, rj) ∈ U so that⋃
U ⊂ B

(
xj, (1 + 2ξ−1 + 4ξ−2 + 8ξ−3 + · · · )ξ−kj

)
.

Now, B(xj, rj) and B(xm, rm) both intersect
⋃

U by (i) and maximality of U . Hence

(A.3) gap(B(xj, rj), B(xm, rm)) ≤ diam
⋃

U ≤ (2ξ−kj)/(1− 2/ξ) < 3ξ−kj
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Figure A.1. Removing the largest ball (light gray) leaves a finite number

of chain-connected ball clusters (dark gray), each of which contains a unique

ball of maximal radius.

by our requirement that ξ > 6. By (iii), we conclude that kj ̸= km. Thus, kj ≥ km + 1,

because km was chosen to be the minimum level among k1, . . . , kN+1. Ergo,⋃
U ⊂ B

(
xj, ξ

−1(1 + 2ξ−1 + 4ξ−2 + 8ξ−3 + · · · )ξ−km
)
.

Thus, by (i) and the triangle inequality,⋃
U ⊂ B

(
xm, rm + 2ξ−1(1 + 2ξ−1 + 4ξ−2 + · · · )ξ−km

)
.

As this conclusion is true for each family U and trivially true for {B(xm, rm)}, we obtain⋃N+1
i=1 B(xi, ri) ⊂ B

(
xm, rm + 2ξ−1(1 + 2ξ−1 + 4ξ−2 + · · · )ξ−km

)
.

Applying (ii) yields (A.2) for n = N + 1. Therefore, by induction, (A.2) holds for all

integers 1 ≤ n ≤ I. Further, reviewing the inductive step, we conclude that M is the

unique index such that kM = mini≥1 ki.

To finish, observe that for any point z ∈
⋃I

i=1B(xi, ri), there exists an index n ≥ M

such that z ∈
⋃n

i=1B(xi, ri). By (A.2), we have

z ∈ B
(
xM ,

(
1 + (2ξ−1)/(1− 2/ξ)

)
ξ−kM

)
.

Because ξ > 6 and r0 = 1, this yields (A.1). □

Appendix B. Lipschitz projections onto lines in Banach spaces

We now present a class of 1-Lipschitz projections onto a line in a Banach space. Given a

real Banach space X, let X∗ denote the dual of X and let J : X → X∗ denote a normalized

duality mapping, i.e. a (nonlinear) map satisfying

(B.1) |J(x)|X∗ = |x| and ⟨J(x), x⟩ = |x|2 for all x ∈ X,

where ⟨f, x⟩ ≡ f(x) ∈ R denotes the natural pairing of f ∈ X∗ and x ∈ X. Alternatively, J
is a subgradient of the convex function x ∈ X 7→ (1/2)|x|2 (see [Asp67, Kie02]). The norm

on any (uniformly) smooth Banach space X is Gateaux (uniformly Fréchet) differentiable,

and thus, J is uniquely determined (see e.g. [Die75, Chapter Two]) when X is smooth.
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Example B.1. When X = ℓp with 1 < p < ∞, J(x) = |x|2−p
ℓp

y ∈ ℓ∗p = ℓp′ , where

y = (|x1|p−2x1, |x2|p−2x2, . . . ) and p′ is the conjugate exponent to p.

Definition B.2 ([ENV19, Definition 3.31]). Let X be a Banach space and let L be a

one-dimensional linear subspace of X. Define the J-projection ΠL onto L by

(B.2) ΠL(x) := ⟨J(v), x⟩v for all x ∈ X,

where J is a normalized dual mapping and v is a point in L with |v| = 1. When L is a

one-dimensional affine subspace of X, define ΠL ≡ p+ΠL−p(·−p) for any choice of p ∈ L.

Example B.3. Let X = ℓ21 = (R2, | · |1), let v = (1, 0), and let L = span v be the x-

axis. There is a one-parameter family of J-projections onto L given as follows. For any

|s| ≤ 1/2, let ws = (s, 1− |s|). With respect to the basis v, ws,

(x, y) =
(
x− s

1− |s|
y
)
v +

( 1

1− |s|
y
)
ws for all (x, y) ∈ ℓ21.

For any |s| ≤ 1/2, a J-projection onto L is given by

ΠL(x, y) =
(
x− s

1− |s|
y, 0
)

for all (x, y) ∈ ℓ21.

Geometrically, the fibers Π−1
L (x, 0) are lines parallel to spanws and Π−1

L (v) = v+ spanws

is a supporting line for the unit ball in ℓ21. When s = 0, ΠL is the orthogonal projection

onto L. See Figure 3.1 for an illustration.

The following lemma is easily derived from the definition of ΠL and (B.1); see [BM22,

Lemma 2.17] for sample details.

Lemma B.4. Let X be a Banach space and let L be a line in X. Every J-projection ΠL

onto L is a 1-Lipschitz projection, i.e. ΠL(x) ∈ L for all x, ΠL(x) = x if and only if x ∈ L,

and |ΠL(x)−ΠL(y)| ≤ |x−y| for all x, y. Moreover, dist(x, L) ≤ |x−ΠL(x)| ≤ 2 dist(x, L)

for every x ∈ X.

A separated set of points that is sufficiently close to a line admits a canonical ordering

(up to choice of orientation) and is locally finite, quantitatively.

Lemma B.5. Let X be a Banach space. Let ΠL1 and ΠL2 be J-projections onto lines L1

and L2, respectively. If V ⊂ X is a δ-separated set and there exists 0 ≤ α < 1/6 such that

|v − ΠLi
(v)| ≤ αδ for all v ∈ V and i = 1, 2, then there exist compatible identifications

of L1 and L2 with R such that ΠL1(v
′) ≤ ΠL2(v

′′) if and only if ΠL2(v
′) ≤ ΠL2(v

′′) for all

v′, v′′ ∈ V . Moreover, if v1, v2 ∈ V and i = 1, 2, then

|ΠLi
(v1)− ΠLi

(v2)| ≤ |v1 − v2| ≤ (1 + 3α)|ΠLi
(v1)− ΠLi

(v2)|.

In particular, V is locally finite: #V ∩B(x, rδ) ≤ 1 + 3r for every x ∈ X and r > 0.

Proof. Repeat the proof of [BM22, Lemma 2.1], mutatis mutandis. (See [BM22, Lemma

2.18] for a related result.) The displayed inequality implies ΠLi
|V is injective and ΠLi

(V )

is a (2/3)δ-separated subset of the line Li, whence V is locally finite. To be precise,

writing n ≤ #V ∩B(x, rδ), we have (2/3)δ(n− 1) ≤ diamΠL(B(x, rδ)) ≤ 2rδ. □
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Appendix C. Comments on Lemma 3.28 in [Schul 2007]

In the authors’ opinion, the proof of [Sch07c, Lemma 3.28] is incorrect and the mistake

made in the proof resists a simple fix. The error is in addition to the gap identified

in [BM22, Remark 3.8] and is unrelated to the issue of radial versus diametrical arcs

discussed in Remarks 1.15 and 3.5.

To describe the situation, let us quickly recall the basic setup in [Sch07c], which is

similar to §2, but with some differences. Given a nested sequence (Xn)
∞
n=n0

of 2−n-nets

for a rectifiable curve Γ in a Hilbert space H, let Ĝ = {B(x,AG ) : x ∈ Xn, n ≥ n0}
denote the corresponding (truncated) multiresolution family for Γ. Let G denote the set

of all Q ∈ Ĝ such that 4Q \ Γ ̸= ∅. Choose a Lipschitz continuous parameterization

f : [0, 1] → Γ such that f(0) = f(1) and #f−1({x}) ≤ 2 for H1-a.e. x ∈ Γ. For any ball

Q ∈ G , define Λ(Q) to be the set of arcs τ = f |[a,b] such that [a, b] is a maximal connected

component of f−1(Γ ∩ Q). For each arc τ , define the arc beta number β̃(τ) by (1.11).

Fix parameters 0 < ϵ1, ϵ2 ≪AG
1. We say that τ is almost flat and write τ ∈ S(Q) if

β̃(τ) < ϵ2βΓ(Q). Fix an integer J ≫ log2AG and for each Q ∈ G , define cores

UQ := U
J,1/64
Q and Ux

Q := U
J,1/8
Q

using Definition 2.1 above with G in place of H . For each Q ∈ G and λ ∈ {1, 2, 4} such

that λQ ∈ G , choose an arc γλQ ∈ Λ(λQ) containing the center of Q. Do this in such a

way that γ2Q extends γQ and γ4Q extends γ2Q whenever the arcs are defined. For each

λ ∈ {1, 2, 4}, introduce the family

G λ
2 := {Q ∈ G : γλQ ∈ S(λQ) and βS(λQ) > ϵ1βΓ(Q)}.

(Schul’s G λ
2 balls correspond to this paper’s Bλ balls. Schul also defines G λ

1 and G λ
3 balls,

but these are unrelated to Lemma 3.28.) Continuing to follow [Sch07c], let us focus on

the case λ = 1. Choose a parameter CU ≫AG
1 and define ∆2.1 to be the subfamily of all

balls Q ∈ G 1
2 such that

• almost flat arcs are flatter in Ux
Q than in Q: βS(Q)(U

x
Q) ≤ C−1

U βS(Q)(Q); and,

• every arc τ ∈ Λ(Q) such that Image(τ) ∩ UQ ̸= ∅ is almost flat: τ ∈ S(Q).

(There are also subfamilies ∆1 and ∆2.2, which are not relevant here.)

Lemma C.1 ([Sch07c, Lemma 3.28]). For every integer 0 ≤ j ≤ J − 1, the family

∆′ = {Q ∈ ∆2.1 : radiusQ = AG 2
−k for some k ≡ j (mod J)} satisfies∑

Q∈∆′

diamQ ≲AG
H1(Γ).

Schul’s strategy for proving Lemma C.1 is the one that we described in §2. It suffices to

construct Borel functions wQ : H → [0,∞] for each Q ∈ ∆′, which satisfy the inequalities

(2.4) and (2.5) with ∆′ in place of G . Build weights wQ using the cores UQ as in §2.3 with

diamUQ in place of diamHQ. (The concept of maximal arc fragments HQ introduced in

Remark 2.11 did not appear in [Sch07c], but in any event diamHQ ≥ diam γQ ≈ diamUQ

because γQ is diametrical for all Q ∈ ∆2.1.) Define the remainder set RQ as in (2.14) and
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Figure C.1. Example of an almost flat arc τ ∈ S(Q) inside of the core

UQ of a Schul-type ∆2.1 ball Q. At the resolution of Q or UQ, the portion

of Image(τ) inside of UQ is indistinguishable from a line segment. However,

zooming in reveals a more complicated picture. The portion of Image(τ)

inside of the sub-ball Q′ ∈ ∆2.1 is the union of two line segments, only one

of which intersects the core UQ′ . The orthogonal projection π from Γ ∩ UQ

onto the horizontal line through the center of Q′ is 1-to-1 when restricted

to the cylinder above points in π(Γ∩UQ′). This shows that [Sch07c, (3.24)]

used in the proof of Lemma 3.28 is invalid.

define an auxiliary quantity sQ = 2ℓ(RQ) +
∑

Q′∈Child(Q) diamUQ′ . By the argument in

[Sch07c, Lemma 3.25, Steps 2–3] or Lemma 2.12 above, the weights {wQ : Q ∈ ∆′} satisfy

(2.4) and (2.5) so long as there exists a universal constant 0 < q < 1 such that

(C.1) diamUQ ≤ qsQ for all Q ∈ ∆′.

Unfortunately, the proof of (C.1) in [Sch07c] contains an error and is incomplete.

Fix Q = B(xQ, AH 2−k) ∈ ∆′. Simplifying the notation from [Sch07c] slightly, write

Q∗ = B(xQ, (1/64)2
−k). As long as we choose J to be sufficiently large, we have

Q∗ ⊂ UQ ⊂ 1.00001Q∗.

Suppose that the central arc γQ = f |[a,b]. Choose an interval [c, d] ⊂ [a, b] such that

[c, d] is a connected component of γ−1
Q (0.99999Q∗) and f([c, d]) has maximal diameter

among all such intervals. (This is like extracting GQ from HQ.) Define ηQ = f |[c,d] and
let L denote the line passing through Edge(ηQ) = [f(c), f(d)]. Because γQ is almost flat,

dist(z, L) ≲AG
ϵ2 diamQ∗ for every z ∈ Image(ηQ). Finally, let π denote the orthogonal

projection from Γ ∩ 0.99999Q∗ onto L. The first error in the proof is in [Sch07c, (3.24)],

which states that for all x ∈ π(Γ ∩ 0.99999Q∗) \ π(RQ), there are at least two points in

Γ ∩ 0.99999Q∗ that project onto x. In Figure C.1, we show that this is not the case.

A second (implicit) error appears in the preamble to the proof just before [Sch07c,

Remark 3.27]. Let Q′ ∈ Child(Q); in addition to the central arc γQ′ , the set S(Q′)

includes at least one other arc τQ′ with a distinct image. (In the figure, γQ′ traces the

horizontal line segment and τQ′ traces the diagonal line segment.) Let γ̂Q′ and τ̂Q′ denote

the extensions of the arcs to elements in Λ(Q). It is implicitly suggested that the arcs

γ̂Q′ and τ̂Q′ are distinct and this together with [Sch07c, (3.24)] is what let’s one check
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(C.1). The example in the figure shows that it is possible for Image(γ̂Q′) = Image(τ̂Q′)

even though Image(γQ′) ̸= Image(τQ′). Ultimately, the proof of (C.1) offered in [Sch07c]

is incomplete and unconvincing.

Nevertheless, (C.1) and [Sch07c, Lemma 3.28] are correct and this can be shown using

the arguments in §§3–7. The essential new ingredients that let us wrap up Schul’s proof

of the Analyst’s Traveling Salesman theorem in Hilbert space (Corollary 1.5) are the

classification of cores in Definition 3.8, the case analysis in §3, Lemma I, and Lemma II.
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